11 resultados para Deoxyuracil Nucleotides
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The equilibrium of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) in aqueous solution in the presence of surfactants was studied by optical spectroscopic techniques and SAXS (small angle X-ray scattering). Anionic SDS (sodium dodecyl sulfate), zwitterionic HPS (N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate) and nonionic TRITON X-100 (t-octyl-phenoxypolyethoxyethanol), surfactants were used. TMPyP is characterized by a protonation equilibrium with a pK(a) around 1.0, associated with the diacid-free base transition, and a second pK(a) around 12.0 related with the transition between the free base and the monoanion form. Three independent species were observed for TMPyP at pH 6.0 as a function of SDS concentration: free TMPyP, TMPyP-SDS aggregates and porphyrin monomer bound to micelles. For HPS and TRITON X-100, the equilibrium of TMPyP as a function of pH is quite similar to that obtained in pure aqueous solution: no aggregation was observed, suggesting that electrostatic contribution is the major factor in the interaction between TMPyP and surfactants. SAXS data analysis demonstrated a prolate ellipsoidal shape for SDS micelles; no significant changes in shape and size were observed for SDS-TMPyP co-micelles. Moreover, the ionization coefficient, alpha, decreases with the increase of the porphyrin concentration, suggesting the ""screening"" of the anionic charge of SDS by the cationic porphyrin. These results are consistent with optical absorption, fluorescence and RLS (resonance light scattering) spectroscopies data, allowing to conclude that neutral surfactants present a smaller interaction with the cationic porphyrin as compared with an ionic surfactant. Therefore, the interaction of TMPyP with the ionic and nonionic surfactants is predominantly due to the electrostatic contribution. Copyright (c) 2008 Society of Porphyrins & Phthalocyanines.
Resumo:
Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report original measurements of total cross sections (TCSs) for positron scattering from the cyclic ethers oxirane (C2H4O), 1,4-dioxane (C4H8O2), and tetrahydropyran (C5H10O). The present experiments focus on the low energy range from similar to 0.2 to 50 eV, with an energy resolution smaller than 300 meV. This study concludes our systematic investigation into TCSs for a class of organic compounds that can be thought of as sub-units or moieties to the nucleotides in living matter, and which as a consequence have become topical for scientists seeking to simulate particle tracks in matter. Note that as TCSs specify the mean free path between collisions in such simulations, they have enjoyed something of a recent renaissance in interest because of that application. For oxirane, we also report original Schwinger multichannel elastic integral cross section (ICS) calculations at the static and static plus polarisation levels, and with and without Born-closure that attempts to account for the permanent dipole moment of C2H4O. Those elastic ICSs are computed for the energy range 0.5-10 eV. To the best of our knowledge, there are no other experimental results or theoretical calculations against which we can compare the present positron TCSs. However, electron TCSs for oxirane (also known as ethylene oxide) and tetrahydropyran do currently exist in the literature and a comparison to them for each species will be presented. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3696378]
Resumo:
In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV) strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources. (C) 2012 Elsevier Editora Ltda. All rights reserved.
Resumo:
Intron splicing is one of the most important steps involved in the maturation process of a pre-mRNA. Although the sequence profiles around the splice sites have been studied extensively, the levels of sequence identity between the exonic sequences preceding the donor sites and the intronic sequences preceding the acceptor sites has not been examined as thoroughly. In this study we investigated identity patterns between the last 15 nucleotides of the exonic sequence preceding the 5' splice site and the intronic sequence preceding the 3' splice site in a set of human protein-coding genes that do not exhibit intron retention. We found that almost 60% of consecutive exons and introns in human protein-coding genes share at least two identical nucleotides at their 3' ends and, on average, the sequence identity length is 2.47 nucleotides. Based on our findings we conclude that the 3' ends of exons and introns tend to have longer identical sequences within a gene than when being taken from different genes. Our results hold even if the pairs are non-consecutive in the transcription order. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.
Resumo:
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.
Resumo:
Uridine adenosine tetraphosphate (Up(4)A) has been recently identified as a novel and potent endothelium-derived contracting factor and contains both purine and pyrimidine moieties, which activate purinergic P2X and P2Y receptors. The present study was designed to compare contractile responses to Up(4)A and other nucleotides such as ATP (P2X/P2Y agonist), UTP (P2Y(2)/P2Y(4) agonist), UDP (P2Y(6) agonist), and alpha,beta-methylene ATP (P2X(1) agonist) in different vascular regions [thoracic aorta, basilar, small mesenteric, and femoral arteries] from deoxycorticosterone acetate-salt (DOCA-salt) and control rats. In DOCA-salt rats [vs. control uninephrectomized (Uni) rats]: (1) in thoracic aorta, Up(4)A-, ATP-, and UP-induced contractions were unchanged; (2) in basilar artery, Up(4)A-, ATP-, UTP- and UDP-induced contractions were increased, and expression for P2X(1), but not P2Y(2) or P2Y(6) was decreased; (3) in small mesenteric artery, Up(4)A-induced contraction was decreased and UDP-induced contraction was increased; expression of P2Y(2) and P2X(1) was decreased whereas P2Y(6) expression was increased; (4) in femoral artery, Up(4)A-. UTP-, and UDP-induced contractions were increased, but expression of P2Y(2), P2Y(6) and P2X(1) was unchanged. The alpha,beta-methylene ATP-induced contraction was bell-shaped and the maximal contraction was reached at a lower concentration in basilar and mesenteric arteries from Uni rats, compared to arteries from DOCA-salt rats. These results suggest that Up(4)A-induced contraction is heterogenously affected among various vascular beds in arterial hypertension. P2Y receptor activation may contribute to enhancement of Up(4)A-induced contraction in basilar and femoral arteries. These changes in vascular reactivity to Up(4)A may be adaptive to the vascular alterations produced by hypertension. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Ayes). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0-10.9% with the differences occurring mainly between 51 and 225 nucleotides 3' of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV) strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources.