13 resultados para Deletions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Despite advances in our understanding of the mechanisms involved in sex determination and differentiation, the specific roles of many genes in these processes are not completely understood in humans. Both DMRT1 and FGF9 are among this group of genes. Dmrt1 controls germ cell differentiation, proliferation, migration and pluripotency and Sertoli cell proliferation and differentiation. Fgf9 has been considered a critical factor in early testicular development and germ cell survival in mice. We screened for the presence of DMRT1 and FGF9 mutations in 33 patients with 46,XY gonadal dysgenesis. No deletions in either DMRT1 or FGF9 were identified using the MLPA technique. Eight allelic variants of DMRT1 were identified, and in silico analysis suggested that the novel c.968-15insTTCTCTCT variant and the c.774G>C (rs146975077) variant could have potentially deleterious effects on the DMRT1 protein. Nine previously described FGF9 allelic variants and six different alleles of the 3' UTR microsatellite were identified. However, none of these DMRT1 or FGF9 variants was associated with increased 46,XY gonadal dysgenesis. In conclusion, our study suggests that neither DMRT1 nor FGF9 abnormalities are frequently involved in dysgenetic male gonad development in patients with non-syndromic 46,XY disorder of sex development. (C) 2012 Published by Elsevier Masson SAS.
Resumo:
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the similar to 12-Mb genome of CAT-1, when compared with the reference S228c genome, contains similar to 36,000 homozygous and similar to 30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.
Resumo:
Purpose: We sought to determine the mechanisms of downregulation of the airway transcription factor Foxa2 in lung cancer and the expression status of Foxa2 in non-small-cell lung cancer (NSCLC). Methods: A series of 25 lung cancer cell lines were evaluated for Foxa2 protein expression, FOXA2 mRNA levels, FOXA2 mutations, FOXA2 copy number changes and for evidence of FOXA2 promoter hypermethylation. In addition, 32 NSCLCs were sequenced for FOXA2 mutations and 173 primary NSCLC tumors evaluated for Foxa2 expression using an immunohistochemical assay. Results: Out of the 25 cell lines, 13 (52%) had undetectable FOXA2 mRNA. The expression of FOXA2 mRNA and Foxa2 protein were congruent in 19/22 cells (p = 0.001). FOXA2 mutations were not identified in primary NSCLCs and were infrequent in cell lines. Focal or broad chromosomal deletions involving FOXA2 were not present. The promoter region of FOXA2 had evidence of hypermethylation, with an inverse correlation between FOXA2 mRNA expression and presence of CpG dinucleotide methylation (p < 0.0001). In primary NSCLC tumor specimens, there was a high frequency of either absence (42/173, 24.2%) or no/low expression (96/173,55.4%) of Foxa2. In 130 patients with stage I NSCLC there was a trend towards decreased survival in tumors with no/low expression of Foxa2 (HR of 1.6, 95%CI 0.9-3.1; p = 0.122). Conclusions: Loss of expression of Foxa2 is frequent in lung cancer cell lines and NSCLCs. The main mechanism of downregulation of Foxa2 is epigenetic silencing through promoter hypermethylation. Further elucidation of the involvement of Foxa2 and other airway transcription factors in the pathogenesis of lung cancer may identify novel therapeutic targets. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EPTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the fast multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome.
Resumo:
Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.
Resumo:
Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.
Resumo:
Background Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype. phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. Methods Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. Results The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype. phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. Conclusion A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
Sistemas de gestão desenvolvidos para a web, a partir de metadados, permitem manutenção eficiente de grandes quantidades de informação. Um vocabulário controlado como o utilizado pelo Sistema Integrado de Bibliotecas da USP (SIBi/USP) necessita de atualização contínua realizada através de uma rede colaborativa com a participação de bibliotecários indexadores de todas as áreas do conhecimento. Este trabalho apresenta os resultados obtidos com o sistema de gestão desenvolvido pelo Grupo de Gerenciamento para a manutenção do Vocabulário Controlado do SIBi/USP. O fluxo deste sistema consiste em filtros de validação realizados pelos componentes do Grupo de Gerenciamento do Vocabulário. A metodologia de gestão do Vocabulário possui além deste sistema, uma política de governança. Os resultados obtidos nos seis anos desde a ativação do sistema de gestão pela Base de Sugestões consistiram em: 1192 inclusões de descritores, 240 alterações, 61 exclusões, totalizando 1493 operações. A gestão e o controle de qualidade do Vocabulário permitiram o aprimoramento do tratamento e da recuperação da informação no Banco de Dados Bibliográficos da USP – DEDALUS.
Resumo:
Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundaries-a process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5' untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69%. The 5' UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females.
Resumo:
CDKN2A encodes proteins such as p16 (INK4a), which negatively regulate the cell-cycle. Molecular genetic studies have revealed that deletions in CDKN2A occur frequently in cancer. Although p16 (INK4a) may be involved in tumor progression, the clinical impact and prognostic implications in head and neck squamous cell carcinoma (HNSCC) are controversial. The objective of this study was to evaluate the frequency of the immunohistochemical expression of p16 (INK4a) in 40 oropharynx and 35 larynx from HNSCC patients treated in a single institution and followed-up at least for 10 years in order to explore potential associations with clinicopathological outcomes and prognostic implications. Forty cases (53.3%) were positive for p16 (INK4a) and this expression was more intense in non-smoking patients (P = 0.050), whose tumors showed negative vascular embolization (P = 0.018), negative lymphatic permeation (P = 0.002), and clear surgical margins (P = 0.050). Importantly, on the basis of negative p16 (INK4a) expression, it was possible to predict a probability of lower survival (P = 0.055) as well as tumors presenting lymph node metastasis (P = 0.050) and capsular rupture (P = 0.0010). Furthermore, increased risk of recurrence was observed in tumors presenting capsular rupture (P = 0.0083). Taken together, the alteration in p16 (INK4a) appears to be a common event in patients with oropharynx and larynx squamous cell carcinoma and the negative expression of this protein correlated with poor prognosis.
Resumo:
Although it is well known that the thyroid hormone (T3) is an important positive regulator of cardiac function over a short term and that it also promotes deleterious effects over a long term, the molecular mechanisms for such effects are not yet well understood. Because most alterations in cardiac function are associated with changes in sarcomeric machinery, the present work was undertaken to find novel sarcomeric hot spots driven by T3 in the heart. A microarray analysis indicated that the M-band is a major hot spot, and the structural sarcomeric gene coding for the M-protein is severely down-regulated by T3. Real-time quantitative PCR-based measurements confirmed that T3 (1, 5, 50, and 100 physiological doses for 2 days) sharply decreased the M-protein gene and protein expression in vivo in a dose-dependent manner. Furthermore, the M-protein gene expression was elevated 3.4-fold in hypothyroid rats. Accordingly, T3 was able to rapidly and strongly reduce the M-protein gene expression in neonatal cardiomyocytes. Deletions at the M-protein promoter and bioinformatics approach suggested an area responsive to T3, which was confirmed by chromatin immunoprecipitation assay. Functional assays in cultured neonatal cardiomyocytes revealed that depletion of M-protein (by small interfering RNA) drives a severe decrease in speed of contraction. Interestingly, mRNA and protein levels of other M-band components, myomesin and embryonic-heart myomesin, were not altered by T3. We concluded that the M-protein expression is strongly and rapidly repressed by T3 in cardiomyocytes, which represents an important aspect for the basis of T3-dependent sarcomeric deleterious effects in the heart.