13 resultados para D-glucose

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 mu M, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJETIVO: Comparar a acurácia e a custo-efetividade do estadiamento metabólico (EM) com o FDG-PET em relação ao estadiamento convencional (EC) no estadiamento inicial de pacientes com câncer de pulmão não pequenas células (CPNPC). MATERIAIS E MÉTODOS: Noventa e cinco pacientes com diagnóstico inicial de CPNPC foram estadiados antes do início do tratamento. Os resultados do EC e EM foram comparados quanto a definição do tratamento e incidência de toracotomia fútil em cada estratégia. RESULTADOS: O EM com FDG-PET classificou 48,4% dos pacientes como estádio mais avançado e 5,3% como menos avançado. O resultado do EM modificaria o tratamento em 41% dos pacientes. A toracotomia foi considerada fútil em 47% dos pacientes com EC e em 19% dos casos com EM. O custo das toracotomias fúteis em oito pacientes no EM foi de R$ 79.720, enquanto em 31 pacientes no EC seria de R$ 308.915. Apenas esta economia seria mais que suficiente para cobrir os custos de todos os exames de FDG-PET nos 95 pacientes (R$ 126.350) ou de FDG-PET/CT (R$ 193.515). CONCLUSÃO: O EM com FDG-PET tem maior acurácia que o EC em pacientes com CPNPC. A FDG-PET e FDG-PET/CT são custo-efetivas e sua utilização se justifica economicamente na saúde pública no Brasil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To estimate the metabolic activity of rectal cancers at 6 and 12 weeks after completion of chemoradiation therapy (CRT) by 2-[fluorine-18] fluoro-2-deoxy-D-glucose-labeled positron emission tomography/computed tomography ([18 FDG] PET/CT) imaging and correlate with response to CRT. Methods and Materials: Patients with cT2-4N0-2M0 distal rectal adenocarcinoma treated with long-course neoadjuvant CRT (54 Gy, 5-fluouracil-based) were prospectively studied (ClinicalTrials. org identifier NCT00254683). All patients underwent 3 PET/CT studies (at baseline and 6 and 12 weeks fromCRT completion). Clinical assessment was at 12 weeks. Maximal standard uptakevalue (SUVmax) of the primary tumor wasmeasured and recorded at eachPET/CTstudy after 1 h (early) and3 h (late) from 18 FDGinjection. Patientswith an increase in early SUVmax between 6 and 12 weeks were considered " bad" responders and the others as "good" responders. Results: Ninety-one patients were included; 46 patients (51%) were "bad" responders, whereas 45 (49%) patients were " good" responders. " Bad" responders were less likely to develop complete clinical response (6.5% vs. 37.8%, respectively; PZ. 001), less likely to develop significant histological tumor regression (complete or near-complete pathological response; 16% vs. 45%, respectively; PZ. 008) and exhibited greater final tumor dimension (4.3cmvs. 3.3cm; PZ. 03). Decrease between early (1 h) and late (3 h) SUVmax at 6-week PET/CTwas a significant predictor of " good" response (accuracy of 67%). Conclusions: Patients who developed an increase in SUVmax after 6 weeks were less likely to develop significant tumor downstaging. Early-late SUVmax variation at 6-week PET/CT may help identify these patients and allow tailored selection of CRT-surgery intervals for individual patients. (C) 2012 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diastereoselective arylation of sugar-derived aldehydes is described. The arylating reagents are generated in situ by a boron-to-zinc exchange reaction of arylboronic acids with Et2Zn to generate arylethylzinc reagents. The exquisite reactivity of the arylzinc reagents allowed for an efficient and mild arylation, delivering the corresponding products in diastereolsomeric ratios of up to >20:1. The utility of the methodology is highlighted with an efficient formal synthesis of (+)-7-epl-goniofufurone, a member of the styryllactone family of natural products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lasiodiplodan, an exopolysaccharide of the (1 -> 6)-beta-d-glucan type, is produced by Lasiodiplodia theobromae MMPI when grown under submerged culture on glucose. The objective of this study was to evaluate lasiodiplodan production by examining the effects of carbon (glucose, fructose, maltose, sucrose) and nitrogen sources (KNO3, (NH4)(2)SO4, urea, yeast extract, peptone), its production in shake flasks compared to a stirred-tank bioreactor, and to study the rheology of lasiodiplodan, and lasiodiplodan's anti-proliferative effect on breast cancer MCF-7 cells. Although glucose (2.05 +/- A 0.05 g L-1), maltose (2.08 +/- A 0.04 g L-1) and yeast extract (2.46 +/- A 0.06 g L-1) produced the highest amounts of lasiodiplodan, urea as N source resulted in more lasiodiplodan per unit biomass than yeast extract (0.74 +/- A 0.006 vs. 0.22 +/- A 0.008 g g(-1)). A comparison of the fermentative parameters of L. theobromae MMPI in shake flasks and a stirred-tank bioreactor at 120 h on glucose as carbon source showed maximum lasiodiplodan production in agitated flasks (7.01 +/- A 0.07 g L-1) with a specific yield of 0.25 +/- A 0.57 g g(-1) and a volumetric productivity of 0.06 +/- A 0.001 g L-1 h(-1). A factorial 2(2) statistical design developed to evaluate the effect of glucose concentration (20-60 g L-1) and impeller speed (100-200 rpm) on lasiodiplodan production in the bioreactor showed the highest production (6.32 g L-1) at 72 h. Lasiodiplodan presented pseudoplastic behaviour, and the apparent viscosity increased at 60A degrees C in the presence of CaCl2. Anti-proliferative activity of lasiodiplodan was demonstrated in MCF-7 cells, which was time- and dose-dependent with an IC50 of 100 mu g lasiodiplodan mL(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorphisms in the VDR gene were reported to be associated with variations in intrauterine and postnatal growth and with adult height, but also with other traits that are strongly correlated such as the BMI, insulin sensitivity, insulin secretion and hyperglycemia. Here, we assessed the impact of VDR polymorphisms on body height and its interactions with obesity- and glucose tolerance-related traits in obese children and adolescents. We studied 173 prepubertal (Tanner's stage 1) and 146 pubertal (Tanner's stages 2-5) obese children who were referred for a weight-loss program. Three single nucleotide polymorphisms were genotyped: rs1544410 (BsmI), rs7975232 (ApaI) and rs731236 (TaqI). BsmI and TaqI genotypes were significantly associated with height in pubertal children, but the associations did not reach statistical significance in prepubertal children. In stepwise regression analyses, the lean body mass, insulin secretion, BsmI or TaqI genotypes and the father's and the mother's height were independently and positively associated with height in pubertal children. These covariables accounted for 46% of the trait variance. The height of homozygous carriers of the minor allele of BsmI was 0.65 z-scores (4 cm) higher than the height of homozygous carriers of the major allele (P=.0006). Haplotype analyses confirmed the associations of the minor alleles of BsmI and TaqI with increased height. In conclusion, VDR genotypes were significantly associated with height in pubertal obese children. The associations were independent from the effects of confounding traits, such as the body fat mass, insulin secretion, insulin sensitivity and glucose tolerance. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focused on understanding the signaling mechanisms leading to GLUT-4 translocation and increased skeletal-muscle glucose uptake that follow creatine (Cr) supplementation in type 2 diabetes (n = 10). AMPK-alpha protein content presented a tendency to be higher (p = 0.06) after Cr supplementation (5 g/d for 12w). The changes in AMPK-alpha protein content significantly related (p < 0.001) to the changes in GLUT-4 translocation (r = 0.78) and Hb1Ac levels (r = -0.68), suggesting that AMPK signaling may be implicated in the effects of supplementation on glucose uptake in type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B-1 receptor knockout mice (B-1(-/-)) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings: Here we show that kinin B-1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B-1 receptors. In these cells, treatment with the B-1 receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B-1(-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B-1 receptor was limited to cells of the adipose tissue (aP2-B-1/B-1(-/-)). Similarly to B-1(-/-) mice, aP2-B-1/B-1(-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B-1(-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B-1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B-1/B-1(-/-) when compared to B-1(-/-) mice. When subjected to high fat diet, aP2-B-1/B-1(-/-) mice gained more weight than B-1(-/-) littermates, becoming as obese as the wild types. Conclusions/Significance: Thus, kinin B-1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De Angelis K, Senador DD, Mostarda C, Irigoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 302: R950-R957, 2012. First published February 8, 2012; doi: 10.1152/ajpregu.00450.2011.-Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 +/- 2 and F60: 118 +/- 2 mmHg) and dark periods (F15: 136 +/- 4 and F60: 136 +/- 5 mmHg) compared with controls (light: 111 +/- 2 and dark: 117 +/- 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive post-acidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the similarity between structural, hemodynamic, and functional changes of obesity-related renal disease and diabetic nephropathy, we hypothesized that renal glucose transporter changes occur in obesity as in diabetes. The aim of the work was to evaluate GLUT1 and GLUT2 in kidneys of an animal model of metabolic syndrome. Neonate spontaneously hypertensive rats (SHR), n=15/group, were treated with monosodium glutamate (5 mg/g) (MetS) for 9 days and compared with saline-treated Wistar-Kyoto (C) and SHR (H) rats. Lee index, systolic arterial pressure (SAP), glycemia, insulin resistance, triglycerides, and HDL cholesterol were evaluated at 3 and 6 months. Medullar GLUT1 and cortical GLUT2 were analyzed by Western blot. MetS vs. C and H rats had the highest Lee index (p<0.001) and insulin resistance (3-months C: 4.3±0.7, H: 3.9±0.9, MetS: 2.7±0.6; 6-months C: 4.2±0.6, H: 3.8±0.5, MetS: 2.4±0.6% • min−1, p<0.001), similar glycemia, and the lowest HDL-cholesterol at 6-months (p<0.001). In the MetS and H rats, SAP was higher vs. C at 3-months (p<0.001) and 6-months (C: 151±15, H: 190±11, MetS: 185±13 mm Hg, p<0.001) of age. GLUT1 was ̴ 13× lower (p<0.001) at 3-months, reestablishing its content at 6-months in MetS group, while GLUT2 was 2× higher (p<0.001) in this group at 6-months of age. Renal GLUT1 and GLUT2 are modulated in kidney of rats with metabolic syndrome, where obesity, insulin resistance and hypertension coexist, despite normoglycemia. Like in diabetes, cortical GLUT2 overexpression may contribute to the development of kidney disease