17 resultados para Complex SU(2) yang-mills-higgs configurations with finite complex euclidean action
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.
Resumo:
Background Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against Ischemia/Reperfusion (I/R) injury. Type 2 Angiotensin II receptors (AT2R) are shown to be upregulated in cardiac hypertrophy observed in hyperthyroidism and this receptor has been reported to mediate cardioprotection against ischemic injury. Methods The aim of the present study was to evaluate the role of AT2R in the recovery of myocardium after I/R in isolated hearts from T3 treated rats. MaleWistar rats were treated with triiodothyronine (T3; 7 μg/100 gBW/day, i.p.) in the presence or not of a specific AT2R blocker (PD123,319; 10 mg/Kg) for 14 days, while normal rats served as control. After treatment, isolated hearts were perfused in Langendorff mode; after 30 min of stabilization, hearts were subjected to 20 min of zero-flow global ischemia followed by 25 min, 35 min and 45 min of reperfusion. Results T3 treatment induced cardiac hypertrophy, which was not changed by PD treatment. Post-ischemic recovery of cardiac function was increased in T3-treated hearts after 35 min and 45 min of reperfusion as compared to control and the ischemic contracture was accelerated and intensified. AT2R blockade was able to return the evaluated functional parameters of cardiac performance (LVDP, +dP/dtmáx and −dP/dtmin) to the control condition. Furthermore, AT2R blockade prevented the increase in AMPK expression levels induced by T3, suggesting its possible involvement in this process. Conclusion AT2R plays a significant role in T3-induced cardioprotection.
Resumo:
We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling and reflections at the gates of a quantum dot. Within the stub model, the calculations focus on the current-current correlation function for the flux of electrons injected into the quantum dot. The linear response theory used allows us to obtain the noise power in the regime of thermal crossover as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is performed employing diagrammatic integration within the universal groups (ensembles of Dyson) for a nonideal, nonequilibrium chaotic quantum dot. We show that changes in the spin distribution determine significant alterations in noise behavior at values of the tunneling rates close to zero, in the regime of strong reflection at the gates.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones
Resumo:
We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.
Resumo:
An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.
Resumo:
The objective of this study was to evaluate the mid-term outcomes of the laparoscopic ileal interposition into the jejunum (JII-SG) or into the duodenum (DII-SG) associated with sleeve gastrectomy for type 2 diabetes mellitus (T2DM) patients with BMI below 35. The procedures were performed on 202 consecutive patients. Mean age was 52.2 +/- 7.5. Mean duration of T2DM was 9.8 +/- 5.2 years. Insulin therapy was used by 41.1%. Dyslipidemia was observed in 78.2%, hypertension in 67.3%, nephropathy in 49.5%, retinopathy in 31.2%, coronary heart disease in 11.9%, and other cardiovascular events in 12.9%. Mean follow-up was 39.1 months (range, 25-61). Early and late mortality was 0.99% and 1.0%, respectively. Early reoperation was performed in 2.5%. Early and late major complications were 8.4% and 3.5%. Early most frequent complications were pneumonia and ileus. Intestinal obstruction was diagnosed in 1.5%. Mean BMI decreased from 29.7 to 23.5 kg/m(2), mean fasting glucose from 202.1 to 112.2 mg/dl, and mean postprandial glucose from 263.3 to 130 mg/dl. Triglycerides diminished from a mean of 273.4 to 110.3 mg/dl and cholesterol from a mean of 204.7 to 160.1 mg/dl. Hypertension was resolved in 87.5%. Mean hemoglobin A(1c) (HbA(1c)) decreased from 8.7 to 6.2% after the JII-SG and to 5.9% following the DII-SG. HbA(1c) below 7% was seen in 89.9% of the patients and below 6.5% in 78.3%. Overall, 86.4% of patients were off antidiabetic medications. Both JII-SG and DII-SG demonstrated to be safe, effective, and long-lasting alternatives for the treatment of T2DM patients with BMI < 35. Beyond glycemic control, other benefits were achieved.
Resumo:
2-(Diphenylphosphinomethyl)aniline. H2L1, reacts with [RuCl2(PPh3)(3)] to yield the monomeric complexes [RuCl2(H2L1)(PPh3)(CH3CN)], [RuCl2(H2L1)(2)]and the chloro-bridged dimer [(H2L1)(PPh3)Ru(mu-Cl)(2)Ru(PPh3) (H2L1)] depending on the conditions applied. Exclusively the monochelate [RuCl2 (H2L1)(dmso)(2)] is formed during reactions of H2L1 with [RuCl2(dmso)(4)]. H2L1 acts as a neutral, bidentate ligand in all complexes. The products are studied spectroscopically and by X-ray diffraction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.
Resumo:
We construct analytical and numerical vortex solutions for an extended Skyrme-Faddeev model in a (3 + 1) dimensional Minkowski space-time. The extension is obtained by adding to the Lagrangian a quartic term, which is the square of the kinetic term, and a potential which breaks the SO(3) symmetry down to SO(2). The construction makes use of an ansatz, invariant under the joint action of the internal SO(2) and three commuting U(1) subgroups of the Poincare group, and which reduces the equations of motion to an ordinary differential equation for a profile function depending on the distance to the x(3) axis. The vortices have finite energy per unit length, and have waves propagating along them with the speed of light. The analytical vortices are obtained for a special choice of potentials, and the numerical ones are constructed using the successive over relaxation method for more general potentials. The spectrum of solutions is analyzed in detail, especially its dependence upon special combinations of coupling constants.
Resumo:
Measurements of the sphericity of primary charged particles in minimum bias proton-proton collisions at root s = 0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p(T) > 0.5 GeV/c in vertical bar eta vertical bar < 0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N-ch) is reported for events with different p(T) scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N-ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p(T) with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
Resumo:
We present the first numerical implementation of the minimal Landau background gauge for Yang-Mills theory on the lattice. Our approach is a simple generalization of the usual minimal Landau gauge and is formulated for the general SU(N) gauge group. We also report on preliminary tests of the method in the four-dimensional SU(2) case, using different background fields. Our tests show that the convergence of the numerical minimization process is comparable to the case of a null background. The uniqueness of the minimizing functional employed is briefly discussed.
Resumo:
Objective: This study aims to explore the possible relationship between the expression level of S100 beta protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Materials and methods: Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. Results: An increase around 15 times values, between the threshold cycle (Delta Ct), of mRNA expression of S100 beta protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Conclusion: Our results indicate, for the first time, that there is coexistence of increased expression of the S100 beta and the type 2 diabetes mellitus gene. Arq Bras Endocrinol Metab. 2012;56(7):435-40