23 resultados para C33 - Models with Panel Data
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Weibull and generalised exponential overdispersion models with an application to ozone air pollution
Resumo:
We consider the problem of estimating the mean and variance of the time between occurrences of an event of interest (inter-occurrences times) where some forms of dependence between two consecutive time intervals are allowed. Two basic density functions are taken into account. They are the Weibull and the generalised exponential density functions. In order to capture the dependence between two consecutive inter-occurrences times, we assume that either the shape and/or the scale parameters of the two density functions are given by auto-regressive models. The expressions for the mean and variance of the inter-occurrences times are presented. The models are applied to the ozone data from two regions of Mexico City. The estimation of the parameters is performed using a Bayesian point of view via Markov chain Monte Carlo (MCMC) methods.
Resumo:
Background: In addition to the oncogenic human papillomavirus (HPV), several cofactors are needed in cervical carcinogenesis, but whether the HPV covariates associated with incident i) CIN1 are different from those of incident ii) CIN2 and iii) CIN3 needs further assessment. Objectives: To gain further insights into the true biological differences between CIN1, CIN2 and CIN3, we assessed HPV covariates associated with incident CIN1, CIN2, and CIN3. Study Design and Methods: HPV covariates associated with progression to CIN1, CIN2 and CIN3 were analysed in the combined cohort of the NIS (n = 3,187) and LAMS study (n = 12,114), using competing-risks regression models (in panel data) for baseline HR-HPV-positive women (n = 1,105), who represent a sub-cohort of all 1,865 women prospectively followed-up in these two studies. Results: Altogether, 90 (4.8%), 39 (2.1%) and 14 (1.4%) cases progressed to CIN1, CIN2, and CIN3, respectively. Among these baseline HR-HPV-positive women, the risk profiles of incident GIN I, CIN2 and CIN3 were unique in that completely different HPV covariates were associated with progression to CIN1, CIN2 and CIN3, irrespective which categories (non-progression, CIN1, CIN2, CIN3 or all) were used as competing-risks events in univariate and multivariate models. Conclusions: These data confirm our previous analysis based on multinomial regression models implicating that distinct covariates of HR-HPV are associated with progression to CIN1, CIN2 and CIN3. This emphasises true biological differences between the three grades of GIN, which revisits the concept of combining CIN2 with CIN3 or with CIN1 in histological classification or used as a common end-point, e.g., in HPV vaccine trials.
Resumo:
In this paper, we propose nonlinear elliptical models for correlated data with heteroscedastic and/or autoregressive structures. Our aim is to extend the models proposed by Russo et al. [22] by considering a more sophisticated scale structure to deal with variations in data dispersion and/or a possible autocorrelation among measurements taken throughout the same experimental unit. Moreover, to avoid the possible influence of outlying observations or to take into account the non-normal symmetric tails of the data, we assume elliptical contours for the joint distribution of random effects and errors, which allows us to attribute different weights to the observations. We propose an iterative algorithm to obtain the maximum-likelihood estimates for the parameters and derive the local influence curvatures for some specific perturbation schemes. The motivation for this work comes from a pharmacokinetic indomethacin data set, which was analysed previously by Bocheng and Xuping [1] under normality.
Resumo:
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.
Resumo:
Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.
Resumo:
We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.
Resumo:
In this work we extend the first order formalism for cosmological models that present an interaction between a fermionic and a scalar field. Cosmological exact solutions describing universes filled with interacting dark energy and dark matter have been obtained. Viable cosmological solutions with an early period of decelerated expansion followed by late acceleration have been found, notably one which presents a dark matter component dominating in the past and a dark energy component dominating in the future. In another one, the dark energy alone is the responsible for both periods, similar to a Chaplygin gas case. Exclusively accelerating solutions have also been obtained.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Exact results on particle densities as well as correlators in two models of immobile particles, containing either a single species or else two distinct species, are derived. The models evolve following a descent dynamics through pair annihilation where each particle interacts once at most throughout its entire history. The resulting large number of stationary states leads to a non-vanishing configurational entropy. Our results are established for arbitrary initial conditions and are derived via a generating function method. The single-species model is the dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake dynamics. In this way, both in finite and semi-infinite chains and also the Bethe lattice can be analysed. The relationship with the random sequential adsorption of dimers and weakly tapped granular materials is discussed.
Resumo:
PURPOSE: To evaluate the sulcus anatomy and possible correlations between sulcus diameter and white-to-white (WTW) diameter in pseudophakic eyes, data that may be important in the stability of add-on intraocular lenses (IOLs). SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Case series. METHODS: In pseudophakic eyes, the axial length (AL) and horizontal WTW were measured by the IOLMaster device. Cross-sectional images were obtained with a 50 MHz ultrasound biomicroscope on the 4 meridians: vertical, horizontal (180 degrees), temporal oblique, and nasal oblique. Sulcus-to-sulcus (STS), angle-to-angle (ATA), and sclera-to-sclera (ScTSc) diameters were measured. The IOL optic diameter (6.0 mm) served as a control. To test reliability, optic measurements were repeated 5 times in a subset of eyes. RESULTS: The vertical ATA and STS diameters were statistically significantly larger than the horizontal diameter (P=.0328 and P=.0216, respectively). There was no statistically significant difference in ScTSc diameters. A weak correlation was found between WTW and horizontal ATA (r = 0.5766, P<.0001) and between WTW and horizontal STS (r = 0.5040, P=.0002). No correlation was found between WTW and horizontal ScTSc (r = 0.2217, P=.1217). CONCLUSIONS: The sulcus anatomy had a vertical oval shape with the vertical meridian being the largest, but it also had variation in the direction of the largest meridian. The WTW measurements showed a weak correlation with STS. In pseudophakic eyes, Soemmerring ring or a bulky haptic may affect the ciliary sulcus anatomy.
Resumo:
We describe a new species of the Bokermannohyla circumdata group from the Estacao de Pesquisa e Desenvolvimento Ambiental Galheiro (EPDA-Galheiro) (19 degrees 12'S; 47 degrees 08'W), Municipality of Perdizes, State of Minas Gerais, a mid-altitudinal (similar or equal to 850 m above sea level) riparian forest environment in the Cerrado of southeastern Brazil. Bokermannohyla napolii sp. nov. is allied to the large-sized species of the group, diagnosed on the basis of adult morphology/morphometrics, and mainly vocalizations. Adult specimens of the new species are most closely related to those of B. luctuosa and B. circumdata, but can be differentiated from the former by having distal subarticular tubercle of finger III bifid/divided in males, and finger IV bifid/divided in males and females; and from both B. luctuosa and B. circumdata by a distinctive advertisement call structure. We also provide bioacoustic data on seven other species of the genus, including previously unknown advertisement calls of B. circumdata and B. carvalhoi, and re-description of the advertisement calls of B. luctuosa, B. ibitiguara, B. nanuzae, B. sazimai, and B. hylax.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.