19 resultados para BANACH-SPACES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We consider the question whether there exists a Banach space X of density continuum such that every Banach space of density at most continuum isomorphically embeds into X (called a universal Banach space of density c). It is well known that a""(a)/c (0) is such a space if we assume the continuum hypothesis. Some additional set-theoretic assumption is indeed needed, as we prove in the main result of this paper that it is consistent with the usual axioms of set-theory that there is no universal Banach space of density c. Thus, the problem of the existence of a universal Banach space of density c is undecidable using the usual axioms of set-theory. We also prove that it is consistent that there are universal Banach spaces of density c, but a""(a)/c (0) is not among them. This relies on the proof of the consistency of the nonexistence of an isomorphic embedding of C([0, c]) into a""(a)/c (0).
Resumo:
We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11], by classifying them according to which side of the dichotomies they fall.
Resumo:
This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.
Resumo:
We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.
Resumo:
We extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.
Resumo:
We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.
Resumo:
We discuss relationships in Lindelof spaces among the properties "indestructible". "productive", "D", and related properties. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper a space X is pseudocompact if it is Tychonoff and every real-valued continuous function on X is bounded. We obtain conditions under which a Tychonoff space is maximal pseudocompact and study conditions under which a regular space is maximal R-closed.
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1 + 1) dimensions, Chern-Simons theories in (2 + 1) dimensions, and non-abelian gauge theories in (2 + 1) and (3 + 1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3 + 1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider a generalized discriminant associated to a symmetric space which generalizes the discriminant of real symmetric matrices, and note that it can be written as a sum of squares of real polynomials. A method to estimate the minimum number of squares required to represent the discrimininant is developed and applied in examples.