COPIES OF c(0)(Gamma) IN C(K, X) SPACES


Autoria(s): Galego, Eloi Medina; Hagler, James N.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

01/11/2013

01/11/2013

02/08/2013

Resumo

We extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).

Identificador

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 140, n. 11, supl. 2, Part 2, pp. 3843-3852, NOV, 2012

0002-9939

http://www.producao.usp.br/handle/BDPI/37586

Idioma(s)

eng

Publicador

AMER MATHEMATICAL SOC

PROVIDENCE

Relação

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Direitos

openAccess

Copyright AMER MATHEMATICAL SOC

Palavras-Chave #C(0)(GAMMA) SPACES #C(K, X) SPACES #JOSEFSON-NISSENZWEIG-ALPHA (JN(ALPHA)) PROPERTY #BANACH-SPACES #SEQUENTIAL CONVERGENCE #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion