5 resultados para Asymptotic expansions

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the local power of the likelihood ratio, Wald, score and gradient tests under the presence of a scalar parameter, phi say, that is orthogonal to the remaining parameters. We show that some of the coefficients that define the local powers remain unchanged regardless of whether phi is known or needs to be estimated, where as the others can be written as the sum of two terms, the first of which being the corresponding term obtained as if phi were known, and the second, an additional term yielded by the fact that phi is unknown. The contribution of each set of parameters on the local powers of the tests can then be examined. Various implications of our main result are stated and discussed. Several examples are presented for illustrative purposes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive asymptotic expansions for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of dispersion models, under a sequence of Pitman alternatives. The asymptotic distributions of these statistics are obtained for testing a subset of regression parameters and for testing the precision parameter. Based on these nonnull asymptotic expansions, the power of all four tests, which are equivalent to first order, are compared. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution P-N (z(1), ... , z(N)) = Z(N)(-1)e(-N)Sigma(N)(i=1) V-alpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i) - z(j)vertical bar(2), where V-alpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the n-point function in terms of the integral kernel for the classical Segal-Bargmann space. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688293]