The local power of the gradient test


Autoria(s): Lemonte, Artur José; Ferrari, Silvia Lopes de Paula
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

07/11/2013

07/11/2013

2012

Resumo

The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.

FAPESP

CNPq (Brazil)

Identificador

ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, HEIDELBERG, v. 64, n. 2, p. 373-381, APR, 2012

0020-3157

http://www.producao.usp.br/handle/BDPI/43058

10.1007/s10463-010-0315-4

http://dx.doi.org/10.1007/s10463-010-0315-4

Idioma(s)

eng

Publicador

SPRINGER HEIDELBERG

HEIDELBERG

Relação

ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS

Direitos

restrictedAccess

Copyright SPRINGER HEIDELBERG

Palavras-Chave #ASYMPTOTIC EXPANSIONS #CHI-SQUARE DISTRIBUTION #GRADIENT TEST #LIKELIHOOD RATIO TEST #PITMAN ALTERNATIVE #POWER FUNCTION #SCORE TEST #WALD TEST #LIKELIHOOD RATIO CRITERION #GENERALIZED LINEAR-MODELS #3 CLASSIC CRITERIA #DISTRIBUTIONS #HYPOTHESES #STATISTICS & PROBABILITY
Tipo

article

original article

publishedVersion