54 resultados para Ashy stem blight

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Limbal stem cells (LSC) are self-renewing, highly proliferative cells in vitro, which express a set of specific markers and in vivo have the capacity to reconstruct the entire corneal epithelium in cases of ocular surface injury. Currently, LSC transplantation is a commonly used procedure in patients with either uni- or bilateral total limbal stem cells deficiency (TLSCD). Although LSC transplantation holds great promise for patients, several problems need to be overcome. In order to find an alternative source of cells that can partially substitute LSC in cornea epithelium reconstruction, we aimed at investigating whether human immature dental pulp stem cells (hIDPSC) would present similar key characteristics as LSC and whether they could be used for corneal surface reconstruction in a rabbit TLSCD model. Materials: We used hIDPSC, which co-express mesenchymal and embryonic stem cell markers and present the capacity to differentiate into derivative cells of the three germinal layers. TLSCD was induced by chemical burn in one eye of rabbits. After 30 days, the opaque tissue formed was removed by superficial keratectomy. Experimental group received undifferentiated hIDPSC, while control group only received amniotic membrane (AM). Both groups were sacrificed after 3 months. Results and conclusions: We have demonstrated, using immunohistochemistry and reverse transcription-polymerase chain reaction, that hIDPSCs express markers in common with LSC, such as ABCG2, integrin beta 1, vimentin, p63, connexin 43 and cytokeratins 3/12. They were also capable of reconstructing the eye surface after induction of unilateral TLSCD in rabbits, as shown by morphological and immunohistochemical analysis using human-specific antibodies against limbal and corneal epithelium. Our data suggest that hIDPSCs share similar characteristics with LSC and might be used as a potential alternative source of cells for corneal reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the good response of stem cell transplant (SCT) in the treatment of multiple myeloma (MM), most patients relapse or do not achieve complete remission, suggesting that additional treatment is needed. We assessed the impact of thalidomide in maintenance after SCT in untreated patients with MM. A hundred and eight patients (<70 years old) were randomized to receive maintenance with dexamethasone (arm A; n = 52) or dexamethasone with thalidomide (arm B; n = 56; 200 mg daily) for 12 months or until disease progression. After a median follow-up of 27 months, an intention to treat analysis showed a 2-year progression-free survival (PFS) of 30% in arm A (95% CI 2238) and 64% in arm B (95% CI 5771; P = 0.002), with median PFS of 19 months and 36 months, respectively. In patients who did not achieve at least a very good partial response, the PFS at 2 years was significantly higher when in use of thalidomide (19 vs. 59%; P = 0.002). Overall survival at 2 years was not significantly improved (70 vs. 85% in arm A and arm B, respectively; P = 0.27). The addition of thalidomide to dexamethasone as maintenance improved the PFS mainly in patients who did not respond to treatment after SCT. Am. J. Hematol. (c) 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites. Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis. The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length. Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endometriosis is a multifactorial gynecological disease characterized by the presence of functional endometrium-like tissue in ectopic sites. Several studies have focused on elucidating the immunological, endocrine, environmental and genetic factors involved in endometriosis. However, its pathogenesis is still unclear. High-resolution comparative genomic hybridization was applied to screen for genomic imbalances in laser microdissected stromal and epithelial cells from 20 endometriotic lesions and three samples of eutopic endometrium derived from eight patients. The expression of seven stemness-related markers (CD9, CD13, CD24, CD34, CD133, CD117/c-Kit and Oct-4) in endometrial tissue samples was evaluated by immunohistochemistry. Samples of eutopic endometrium showed normal genomic profiles. In ectopic tissues, an average of 68 genomic imbalances was detected per sample. DNA losses were more frequently detected and involved mainly 3p, 5q, 7p, 9p, 11q, 16q, 18q and 19q. Many of the genomic imbalances detected were common to endometriotic stroma and epithelia and also among different endometriotic sites from the same patient. These findings suggested a clonal origin of the endometriotic cells and the putative involvement of stem cells. Positive immunostaining for CD9, CD34, c-Kit and Oct-4 markers was detected in isolated epithelial and/or stromal cells in eutopic and ectopic endometrium in the majority of cases. The presence of shared genomic alterations in stromal and epithelial cells from different anatomical sites of the same patient and the expression of stemness-related markers suggested that endometriosis arises as a clonal proliferation with the putative involvement of stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amniotic fluid (AF) was described as a potential source of mesenchymal stem cells (MSCs) for biomedicine purposes. Therefore, evaluation of alternative cryoprotectants and freezing protocols capable to maintain the viability and stemness of these cells after cooling is still needed. AF stem cells (AFSCs) were tested for different freezing methods and cryoprotectants. Cell viability, gene expression, surface markers, and plasticity were evaluated after thawing. AFSCs expressed undifferentiated genes Oct4 and Nanog; presented typical markers (CD29, CD44, CD90, and CD105) and were able to differentiate into mesenchymal lineages. All tested cryoprotectants preserved the features of AFSCs however, variations in cell viability were observed. In this concern, dimethyl sulfoxide (Me2SO) showed the best results. The freezing protocols tested did not promote significant changes in the AFSCs viability. Time programmed and nonprogrammed freezing methods could be used for successful AFSCs cryopreservation for 6 months. Although tested cryoprotectants maintained undifferentiated gene expression, typical markers, and plasticity of AFSCs, only Me2SO and glycerol presented workable viability ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gain-of-function mutations in FGFR2 cause Apert syndrome (AS), a disease characterized by craniosynostosis and limb bone defects both due to abnormalities in bone differentiation and remodeling. Although the periosteum is an important cell source for bone remodeling, its role in craniosynostosis remains poorly characterized. We hypothesized that periosteal mesenchymal stem cells (MSCs) and fibroblasts from AS patients have abnormal cell phenotypes that contribute to the recurrent fusion of the coronal sutures. MSCs and fibroblasts were obtained from the periostea of 3 AS patients (S252W) and 3 control individuals (WT). We evaluated the proliferation, migration, and osteogenic differentiation of these cells. Interestingly, S252W mutation had opposite effects on different cell types: S252W MSCs proliferated less than WT MSCs, while S252W fibroblasts proliferated more than WT fibroblasts. Under restrictive media conditions, only S252W fibroblasts showed enhanced migration. The presence of S252W mutation increased in vitro and in vivo osteogenic differentiation in both studied cell types, though the difference compared to WT cells was more pronounced in S252W fibroblasts. This osteogenic differentiation was reversed through inhibition of JNK. We demonstrated that S252W fibroblasts can induce osteogenic differentiation in periosteal MSCs but not in MSCs from another tissue. MSCs and fibroblasts responded differently to the pathogenic effects of the FGFR2(S252W) mutation. We propose that cells from the periosteum have a more important role in the premature fusion of cranial sutures than previously thought and that molecules in JNK pathway are strong candidates for the treatment of AS patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells. (C) 2012 International Society for Advancement of Cytometry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-alpha, IL-6 and oxidative stress measured by Amplex(A (R)) reagent were observed. The level of TGF-beta 1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.