44 resultados para Analysis of gene expression
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.
Resumo:
We present here the clinical and molecular data of two patients with acromegaly treated with octreotide LAR after non-curative surgery, and who presented different responses to therapy. Somatostatin receptor type 2 and 5 (SSTR2 and SSTR5), and aryl hydrocarbon receptor-interacting protein (AIP) expression levels were analyzed by qPCR. In both cases, high SSTR2 and low SSTR5 expression levels were detected; however, only one of the patients achieved disease control after octreotide LAR therapy. When we analyzed AIP expression levels of both cases, the patient whose disease was controlled after therapy exhibited AIP expression levels that were two times higher than the patient whose disease was still active. These two cases illustrate that, although the currently available somatostatin analogs bind preferentially to SSTR2, some patients are not responsive to therapy despite high expression of this receptor. This difference could be explained by differences in post-receptor signaling pathways, including the recently described involvement of AIP. Arq Bras Endocrinol Metab. 2012;56(8):501-6
Resumo:
The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.
Resumo:
Abstract Background Spotted cDNA microarrays generally employ co-hybridization of fluorescently-labeled RNA targets to produce gene expression ratios for subsequent analysis. Direct comparison of two RNA samples in the same microarray provides the highest level of accuracy; however, due to the number of combinatorial pair-wise comparisons, the direct method is impractical for studies including large number of individual samples (e.g., tumor classification studies). For such studies, indirect comparisons using a common reference standard have been the preferred method. Here we evaluated the precision and accuracy of reconstructed ratios from three indirect methods relative to ratios obtained from direct hybridizations, herein considered as the gold-standard. Results We performed hybridizations using a fixed amount of Cy3-labeled reference oligonucleotide (RefOligo) against distinct Cy5-labeled targets from prostate, breast and kidney tumor samples. Reconstructed ratios between all tissue pairs were derived from ratios between each tissue sample and RefOligo. Reconstructed ratios were compared to (i) ratios obtained in parallel from direct pair-wise hybridizations of tissue samples, and to (ii) reconstructed ratios derived from hybridization of each tissue against a reference RNA pool (RefPool). To evaluate the effect of the external references, reconstructed ratios were also calculated directly from intensity values of single-channel (One-Color) measurements derived from tissue sample data collected in the RefOligo experiments. We show that the average coefficient of variation of ratios between intra- and inter-slide replicates derived from RefOligo, RefPool and One-Color were similar and 2 to 4-fold higher than ratios obtained in direct hybridizations. Correlation coefficients calculated for all three tissue comparisons were also similar. In addition, the performance of all indirect methods in terms of their robustness to identify genes deemed as differentially expressed based on direct hybridizations, as well as false-positive and false-negative rates, were found to be comparable. Conclusion RefOligo produces ratios as precise and accurate as ratios reconstructed from a RNA pool, thus representing a reliable alternative in reference-based hybridization experiments. In addition, One-Color measurements alone can reconstruct expression ratios without loss in precision or accuracy. We conclude that both methods are adequate options in large-scale projects where the amount of a common reference RNA pool is usually restrictive.
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.
Resumo:
Mesenchymal stem cells (MSCs) have received great attention due to their remarkable regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. Although conventionally isolated from the bone marrow, they are known to exist in all tissues and organs, raising the question on whether they are identical cell populations or have important differences at the molecular level. To better understand the relationship between MSCs residing in different tissues, we analyzed the expression of genes related to pluripotency (SOX2 and OCT-4) and to adipogenic (C/EBP and ADIPOR1), osteogenic (OMD and ALP), and chondrogenic (COL10A1 and TRPV4) differentiation in cultures derived from murine endodermal (lung) and mesodermal (adipose) tissue maintained in different conditions. MSCs were isolated from lungs (L-MSCs) and inguinal adipose tissue (A-MSCs) and cultured in normal conditions, in overconfluence or in inductive medium for osteogenic, adipogenic, or chondrogenic differentiation. Cultures were characterized for morphology, immunophenotype, and by quantitative real-time reverse transcription-polymerase chain reaction for expression of pluripotency genes or markers of differentiation. Bone marrow-derived MSCs were also analyzed for comparison of these parameters. L-MSCs and A-MSCs exhibited the typical morphology, immunophenotype, and proliferation and differentiation pattern of MSCs. The analysis of gene expression showed a higher potential of adipose tissue-derived MSCs toward the osteogenic pathway and of lung-derived MSCs to chondrogenic differentiation, representing an important contribution for the definition of the type of cell to be used in clinical trials of cell therapy and tissue engineering.
Resumo:
Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.
Resumo:
OBJECTIVE: During the neonatal and infancy periods, some chronic liver diseases may lead to progressive hepatic fibrosis, which is a condition that can ultimately result in the loss of organ function and severe portal hypertension necessitating hepatic transplantation. In a previous report, pharmacological interventions were demonstrated to modulate hepatic fibrosis induced by bile duct ligation in young rats. The administration of pentoxifylline or prednisolone, or the combination of both, resulted in reduced fibrogenesis in portal spaces. The objectives of the present study were to evaluate the expression of transforming growth factor beta and vascular endothelial growth factor after bile duct ligation in young rats and to assess the effect of those same drugs on cytokine expression. METHODS: In this experimental study, 80 young rats (21 or 22 days old) were submitted either to laparotomy and common bile duct ligation or to sham surgery. The animals were allocated into four groups according to surgical procedure, and the following treatments were administered: (1) common bile duct ligation + distilled water, (2) sham surgery + distilled water, (3) common bile duct ligation + pentoxifylline, or (4) common bile duct ligation + prednisolone. After 30 days, a hepatic fragment was collected from each animal for immunohistochemical analysis using monoclonal antibodies against transforming growth factor beta and vascular endothelial growth factor. Digital morphometric and statistical analyses were performed. RESULTS: The administration of pentoxifylline reduced the transforming growth factor beta-marked area and the amount of transforming growth factor beta expressed in liver tissue. This effect was not observed after the administration of prednisolone. There was a significant reduction in vascular endothelial growth factor expression after the administration of either drug compared with the non-treatment group. CONCLUSIONS: The administration of pentoxifylline to cholestatic young rats resulted in the diminished expression of transforming growth factor beta and vascular endothelial growth factor in liver tissue. The administration of steroids resulted in the diminished expression of vascular endothelial growth factor only. These pathways may be involved in hepatic fibrogenesis in young rats submitted to bile duct ligation and exposed to pentoxifylline or prednisolone.
Resumo:
Background: This study has evaluated the effect of antimicrobial photodynamic therapy (aPDT) used in conjunction with non-surgical and surgical periodontal treatment (PT) in modulating gene expression during periodontal wound healing. Methods: Fifteen patients with chronic periodontitis, presenting bilaterally lower molars with class III furcation lesions and scheduled for extraction, were selected. In initial therapy, scaling and root planing (SRP) was performed in the Control Group (CG), while SRP + aPDT were performed in the Test Group (TG). 45 days later, flap surgery plus SRP, and flap surgery plus SRP + aPDT were performed in the CG and TG, respectively. At 21 days post-surgery, the newly formed granulation tissue was collected, and Real-time PCR evaluated the expression of the genes: tumor necrosis factor-?, interleukin-1?, interleukin-4, interleukin-10, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2), osteoprotegerin (OPG), receptor activator of nuclear factor- ?B ligand (RANKL), type I collagen, alkaline phosphatase, osteopontin, osteocalcin, and bone sialoprotein. Results: There were statistically significant differences between the groups in relation to mRNA levels for MMP-2 (TG = 3.26 ± 0.89; CG = 4.23 ± 0.97; p = 0.01), TIMP-2/MMP-2 ratio (TG = 0.91 ± 0.34; CG = 0.73 ± 0.32; p = 0.04), OPG (TG = 0.84 ± 0.45; CG = 0.30 ± 0.26; p = 0.001), and OPG/RANKL ratio (TG = 0.60 ± 0.86; CG = 0.23 ± 0.16; p = 0.04), favoring the TG. Conclusion: The present data suggest that the aPDT associated to nonsurgical and surgical periodontal therapy may modulate the extracellular matrix and bone remodeling by up regulating the TIMP- 2/MMP-2 and OPG/RANKL mRNA ratio, but the clinical relevance needs to be evaluated in further studies.
Resumo:
OBJECTIVE: During the neonatal and infancy periods, some chronic liver diseases may lead to progressive hepatic fibrosis, which is a condition that can ultimately result in the loss of organ function and severe portal hypertension necessitating hepatic transplantation. In a previous report, pharmacological interventions were demonstrated to modulate hepatic fibrosis induced by bile duct ligation in young rats. The administration of pentoxifylline or prednisolone, or the combination of both, resulted in reduced fibrogenesis in portal spaces. The objectives of the present study were to evaluate the expression of transforming growth factor β and vascular endothelial growth factor after bile duct ligation in young rats and to assess the effect of those same drugs on cytokine expression. METHODS: In this experimental study, 80 young rats (21 or 22 days old) were submitted either to laparotomy and common bile duct ligation or to sham surgery. The animals were allocated into four groups according to surgical procedure, and the following treatments were administered: (1) common bile duct ligation + distilled water, (2) sham surgery + distilled water, (3) common bile duct ligation + pentoxifylline, or (4) common bile duct ligation + prednisolone. After 30 days, a hepatic fragment was collected from each animal for immunohistochemical analysis using monoclonal antibodies against transforming growth factor β and vascular endothelial growth factor. Digital morphometric and statistical analyses were performed. RESULTS: The administration of pentoxifylline reduced the transforming growth factor β-marked area and the amount of transforming growth factor β expressed in liver tissue. This effect was not observed after the administration of prednisolone. There was a significant reduction in vascular endothelial growth factor expression after the administration of either drug compared with the non-treatment group. CONCLUSIONS: The administration of pentoxifylline to cholestatic young rats resulted in the diminished expression of transforming growth factor β and vascular endothelial growth factor in liver tissue. The administration of steroids resulted in the diminished expression of vascular endothelial growth factor only. These pathways may be involved in hepatic fibrogenesis in young rats submitted to bile duct ligation and exposed to pentoxifylline or prednisolone.
Resumo:
Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity
Resumo:
Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.
Resumo:
Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.
Resumo:
Chronic administration of glucocorticoids (GC) leads to characteristic features of type 2 diabetes in mammals. The main action of dexamethasone in target cells occurs through modulation of gene expression, although the exact mechanisms are still unknown. We therefore investigated the gene expression profile of pancreatic islets from rats treated with dexamethasone using a cDNA array screening analysis. The expression of selected genes and proteins involved in mitochondria] apoptosis was further analyzed by PCR and immunoblotting. Insulin, triglyceride and free fatty acid plasma levels, as well as glucose-induced insulin secretion, were significantly higher in dexamethasone-treated rats compared with controls. Out of 1176 genes, 60 were up-regulated and 28 were down-regulated by dexamethasone treatment. Some of the modulated genes are involved in apoptosis, stress response, and proliferation pathways. RT-PCR confirmed the cDNA array results for 6 selected genes. Bax alpha protein expression was increased, while Bcl-2 was decreased. In vivo dexamethasone treatment decreased the mitochondrial production of NAD(P)H, and increased ROS production. Concluding, our data indicate that dexamethasone modulates the expression of genes and proteins involved in several pathways of pancreatic-islet cells, and mitochondria dysfunction might be involved in the deleterious effects after long-term GC treatment.