Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon


Autoria(s): Silva Neto, José Freire da; Koide, Tie ; Gomes, Suely Lopes; Marques, Marilis do Valle
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

26/08/2013

26/08/2013

2010

Resumo

Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.

This work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). During the course of this work, JFSN and TK were supported by predoctoral fellowships from FAPESP. MVM and SLG are partly supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

This work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). During the course of this work, JFSN and TK were supported by predoctoral fellowships from FAPESP. MVM and SLG are partly supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Identificador

BMC Microbiology. 2010 Aug 28;10(1):231

1471-2180

http://www.producao.usp.br/handle/BDPI/32803

10.1186/1471-2180-10-231

http://www.biomedcentral.com/1471-2180/10/231

Idioma(s)

eng

Relação

BMC Microbiology

Direitos

openAccess

da Silva Neto et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tipo

article

original article