11 resultados para Amperometric
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Terbinafine hydrochloride (TerbHCl) is an allylamine derivative with fungicidal action, especially against dermatophytes. Different analytical methods have been reported for quantifying TerbHCl in different samples. These procedures require time-consuming sample preparation or expensive instrumentation. In this paper, electrochemical methods involving capillary electrophoresis with contactless conductivity detection, and amperometry associated with batch injection analysis, are described for the determination of TerbHCl in pharmaceutical products. In the capillary electrophoresis experiments, terbinafine was protonated and analyzed in the cationic form in less than 1 min. A linear range from 1.46 to 36.4 mu g mL(-1) in acetate buffer solution and a detection limit of 0.11 mu g mL(-1) were achieved. In the amperometric studies, terbinafine was oxidized at +0.85 V with high throughput (225 injection h(-1)) and good linear range (10-100 mu mol L-1). It was also possible to determine the antifungal agent using simultaneous conductometric and potentiometric titrations in the presence of 5% ethanol. The electrochemical methods were applied to the quantification of TerbHCl in different tablet samples; the results were comparable with values indicated by the manufacturer and those found using titrimetry according to the Pharmacopoeia. The electrochemical methods are simple, rapid and an appropriate alternative for quantifying this drug in real samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Urease (Urs) was immobilized in electrochemically prepared polypyrrole (PPy) and the resulting films were characterized by cyclic voltammetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet visible spectroscopy (UV-VIS). The enzymatic activity of Urs entrapped in the PPy matrix was confirmed by the catalytic conversion of urea into carbon dioxide and ammonia, when urea was detected amperometrically at different concentrations in standard samples and commercial fertilizers. The PPy/Urs biosensors exhibited selectivity, a relatively high efficiency at urea concentrations below 3.0 mmol L-1, and a sensitivity to urea of 2.41 mu A cm(-2) mmol(-1) L (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The main goal of this work was to develop a simple analytical method for quantification of glycerol based on the electrocatalytic oxidation of glycerol on the copper surface adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with glycerol concentration over the range 60-3200 mg kg(-1) (equivalent to 3-160 mg L(-1) in solution). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 5% (n = 10), and the detection limit of the method was estimated to be 5 mg kg(-1) in biodiesel (equivalent to 250 mu g L(-1) in solution) (S/N = 3). The sample throughput under optimised conditions was estimated to be 90 h(-1). Different types of biodiesel samples (B100), as in the types of vegetable oils or animal fats used to produce the fuels, were analysed (seven samples). The only sample pre-treatment used was an extraction of glycerol from the biodiesel sample containing a ratio of 5 mL of water to 250 mg of biodiesel. The proposed method improves the analytical parameters obtained by other electroanalytical methods for quantification of glycerol in biodiesel samples, and its accuracy was evaluated using a spike-and-recovery assay, where all the biodiesel samples used obtained admissible values according to the Association of Official Analytical Chemists. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
A bare graphite-polyurethane composite was evaluated in the tetracycline (TC) determination in natural water samples. Using differential pulse voltammetry (DPV), a linear response was observed in the range of 4.00-40.0 mu mol L-1 with limit of detection of 2.80 mu mol L-1, without the need of surface renewing between successive runs. During the tetracycline determination in water samples, recoveries between 92.6 and 100% were found. The results for TC determination in water samples after a pre-concentration stage agreed with spiked value at a 95% confidence level according to student t-test.
Resumo:
The use of standard reference electrodes, such as Ag/AgCl or saturated calomel electrodes, in potentiometric and amperometric studies involving miniaturized electrochemical systems, or those operating under positive hydraulic pressure, is often impractical. Placement of the reference electrode in the direct vicinity of the working electrode is often prohibited by the dimensions or layout of the electrochemical cell, while the alternative strategy of locating the reference electrode in a separate compartment often leads to electrolyte leakage and contamination of the system. In the present study, we have investigated the functionality of a pseudoreference electrode comprising a platinum wire, one end of which was maintained in intimate contact with the internal solution of an Ag/AgCl reference electrode while the other was connected, via a BNC connector, to a platinum probe located within the electrochemical cell. Linear and cyclic voltammetric studies, involving both aqueous and nonaqueous electrolytes, were carried out using the pseudoreference electrode and an electrochemical cup-type cell with three electrodes or an electrochemical flow reactor. In all cases, the functionality of the Pt//Ag/AgCl system was similar to that of a conventional Ag/AgCl reference electrode. Variations in the electrolyte did not alter the potential or voltammetric profile recorded when using the pseudoreference system, although peak currents were generally improved and potential values shifted by approximately +350 mV in comparison with the Ag/AgCl electrode, therefore, the system pseudoreference can be applied in any electrochemical system due to the constant potential difference. It is concluded that the pseudoreference electrode can be used with advantage to obtain potentiometric and amperometric measurements in both simple and complex electrochemical systems.
Resumo:
A novel amperometric sensor based on the incorporation of ruthenium oxide hexacyanoferrate (RuOHCF) into multiwalled carbon nanotubes (MWCNTs) immobilized on a glassy carbon electrode is described. Cyclic voltammetry experiments indicated that the cathodic reduction of hydrogen peroxide at the RuOHCF/MWCNTs100/GC modified electrode is facilitated, occurring at 0.0 V vs. Ag/AgCl/KCl(sat). Following the optimization of the experimental conditions, the proposed sensor presented excellent analytical properties for hydrogen peroxide determination, with a low limit of detection (4.7 mu mol L-1), a large dynamic concentration range (0.1-10 mmol L-1) and a sensitivity of 1280 mu A mmol(-1) L cm(-2). The usefulness of the RuOHCF/MWCNTs100/GC electrochemical sensor was confirmed by monitoring the consumption of hydrogen peroxide during the degradation of phenol by the Fenton reaction. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Morphologic changes on copper surfaces upon applying an established potential protocol were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed a good correlation between the time employed in the electrode activation and the resulting microstructure and electrochemical activity.
Resumo:
Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.
Resumo:
In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.
Resumo:
The process for obtaining polypyrrole-2-carboxylic acid (PPY-2-COOH) films in acetonitrile was investigated using cyclic voltammetry, electrochemical quartz crystal microgravimetry (EQCM), and infrared spectroscopy (FTIR). Different potential ranges were applied during cyclic voltammetry experiments with the aim of obtaining films without and with the presence of controlled amounts of water added in acetonitrile. The FTIR spectra of the films have evidenced that cations and anions from the electrolyte solution were incorporated into the PPY-2-COOH structure, with a preferential adsorption of cations. After chemically immobilizing polyphenoloxidase (tyrosinase, PPO), PPY-2-COOH/PPO films were build for amperometric detection of catechol, establishing a linear limit of concentrations ranging from 5.0 x 10-4 to 2.5 x 10-2 mol L-1.