Development and Evaluation of a Pseudoreference Pt//Ag/AgCl Electrode for Electrochemical Systems
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
24/10/2013
24/10/2013
2012
|
Resumo |
The use of standard reference electrodes, such as Ag/AgCl or saturated calomel electrodes, in potentiometric and amperometric studies involving miniaturized electrochemical systems, or those operating under positive hydraulic pressure, is often impractical. Placement of the reference electrode in the direct vicinity of the working electrode is often prohibited by the dimensions or layout of the electrochemical cell, while the alternative strategy of locating the reference electrode in a separate compartment often leads to electrolyte leakage and contamination of the system. In the present study, we have investigated the functionality of a pseudoreference electrode comprising a platinum wire, one end of which was maintained in intimate contact with the internal solution of an Ag/AgCl reference electrode while the other was connected, via a BNC connector, to a platinum probe located within the electrochemical cell. Linear and cyclic voltammetric studies, involving both aqueous and nonaqueous electrolytes, were carried out using the pseudoreference electrode and an electrochemical cup-type cell with three electrodes or an electrochemical flow reactor. In all cases, the functionality of the Pt//Ag/AgCl system was similar to that of a conventional Ag/AgCl reference electrode. Variations in the electrolyte did not alter the potential or voltammetric profile recorded when using the pseudoreference system, although peak currents were generally improved and potential values shifted by approximately +350 mV in comparison with the Ag/AgCl electrode, therefore, the system pseudoreference can be applied in any electrochemical system due to the constant potential difference. It is concluded that the pseudoreference electrode can be used with advantage to obtain potentiometric and amperometric measurements in both simple and complex electrochemical systems. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) |
Identificador |
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, WASHINGTON, v. 51, n. 14, supl. 4, Part 1-2, pp. 5367-5371, APR 11, 2012 0888-5885 http://www.producao.usp.br/handle/BDPI/35934 10.1021/ie2026025 |
Idioma(s) |
eng |
Publicador |
AMER CHEMICAL SOC WASHINGTON |
Relação |
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH |
Direitos |
restrictedAccess Copyright AMER CHEMICAL SOC |
Palavras-Chave | #DIAMOND ELECTRODES #REACTOR #OXIDATION #ENGINEERING, CHEMICAL |
Tipo |
article original article publishedVersion |