8 resultados para Accounting errors
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).
Resumo:
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
A recent review of the homology concept in cladistics is critiqued in light of the historical literature. Homology as a notion relevant to the recognition of clades remains equivalent to synapomorphy. Some symplesiomorphies are homologies inasmuch as they represent synapomorphies of more inclusive taxa; others are complementary character states that do not imply any shared evolutionary history among the taxa that exhibit the state. Undirected character-state change (as characters optimized on an unrooted tree) is a necessary but not sufficient test of homology, because the addition of a root may alter parsimonious reconstructions. Primary and secondary homology are defended as realistic representations of discovery procedures in comparative biology, recognizable even in Direct Optimization. The epistemological relationship between homology as evidence and common ancestry as explanation is again emphasized. An alternative definition of homology is proposed. (c) The Willi Hennig Society 2012.
Resumo:
This paper introduces a skewed log-Birnbaum-Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426-443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.
Resumo:
Changepoint regression models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the avaliable random observations. Up to now various changepoint models have been suggested for differents applications like reliability, econometrics or medicine. In many practical situations the covariate cannot be measured precisely and an alternative model are the errors in variable regression models. In this paper we study the regression model with errors in variables with changepoint from a Bayesian approach. From the simulation study we found that the proposed procedure produces estimates suitable for the changepoint and all other model parameters.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.