14 resultados para AMINO-ACIDS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
Resumo:
This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks). The animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) (n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance.
Resumo:
Photoprotection of the agarophyte red alga Gracilaria tenuistipitata against ultraviolet radiation (UVR) was investigated in algae submitted for 1 week to photosynthetically active radiation (PAR, 260 mu mol photons m(-2) s(-1)) or PAR + UVR (UV-A, 8.13 W m(-2) and UV-B, 0.42 W m(-2)) under different nitrogen concentrations: 0, 0.1, and 0.5 mM of NO3-. Photosynthetic pigments decreased during the time of the experiment mainly under low nitrogen supply and UVR. Incubation under high nitrogen supply (0.5 mM) sustained the photosynthetic levels over time. In contrast, mycosporine-like amino acids (MAAs) increased up to eightfold in the presence of UVR and 0.5 mM NO3-. Under PAR + UVR, maximal quantum yield was positively correlated to MAA abundance, whereas under PAR no correlation was found. The photosynthetic yield of algae cultivated during seven days under PAR + UVR was less affected by a 30-min exposure of high UVR (16 W m(-2)) and fully recovered after transferring to low PAR irradiances, whereas algae kept under PAR were more affected by UV exposure and no full recovery was observed. Growth rates decreased after three days in the presence of UVR and under low nitrate supply. However, these rates were similar when compared with treatments of PAR and PAR + UVR after seven days, with the exception of samples in 0 mM NO3-, indicating that the acclimation after one week's exposure is related to nitrate supply. In conclusion, the lowest negative effect of UVR on photosynthesis and growth rate in high N-supply-grown algae could be explained by the stimulation of photoprotection mechanisms, such as accumulation of MAAs. Photostimulation of MAA accumulation by UVR under high N supply was observed in G. tenuistipitata even after 20 years in culture without the induction of this photomorphogenic light signal.
Resumo:
This is a study on the Avian coronavirus IBV and chicken host-relationship from the codon usage point of view based on fifty-nine non-redundant IBV S1 sequences (nt 1-507) from strains detected worldwide and chicken tissue-specific protein genes sequences from IBV-replicating sites. The effective number of codons (ENC) values ranged from 36 to 47.8, indicating a high-to-moderate codon usage bias. The highest IBV codon adaptation index (CAI) value was 0.7, indicating a distant virus versus host synonymous codons usage. The ENC x GC3 % curve indicates that both mutational pressure and natural selection are the driving forces on codon usage pattern in S1. The low CAI values agree with a low S protein expression and considering that S protein is a determinant for attachment and neutralization, this could be a further mechanism besides mRNA transcription attenuation for a low expression of this protein leading to an immune camouflage.
Resumo:
The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru-2(CH3COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters Delta H degrees, Delta S degrees, and Delta V degrees were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru-2 substituted species. The results revealed that the [Ru-2(CH3COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.
Resumo:
Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.
Resumo:
Branched-chain amino acids (BCAA) supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE)-derived biochemical markers of muscle soreness (creatine kinase (CK), aldolase, myoglobin), soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.
Resumo:
A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper compares the responses of conventional and transgenic soybean to glyphosate application in terms of the contents of 17 detectable soluble amino acids in leaves, analyzed by HPLC and fluorescence detection. Glutamate, histidine, asparagine, arginine + alanine, glycine + threonine and isoleucine increased in conventional soybean leaves when compared to transgenic soybean leaves, whereas for other amino acids, no significant differences were recorded. Univariate analysis allowed us to make an approximate differentiation between conventional and transgenic lines, observing the changes of some variables by glyphosate application. In addition, by means of the multivariate analysis, using principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA) it was possible to identify and discriminate different groups based on the soybean genetic origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A series of 2,5-diaryl substituted furans functionalized with several amino acids were synthesized and evaluated as the cyclooxygenases COX-1 and COX-2 enzymes inhibitors. The proline-substituted compound inhibited PGE(2) secretion by LPS-stimulated neutrophils, suggesting selectivity for COX-2. Molecular docking studies in the binding site of COX-2 were performed. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The role of the delta-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Delta(1)-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS. GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Delta(1)-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
In this study, we investigated the physiological alterations during ontogeny for cachara (Pseudoplatystoma reticulatum) and their hybrid larvae (Pseudoplatystoma corruscans x P. reticulatum) using lipids and fatty acids as physiological tools to elucidate the basis for differences in these groups' productivity in an industrial setting. Eggs and larvae samples were collected during January and February of 2008 in the city of Bandeirantes, MS, and were divided into three primary phases: phase I (0-16 h after fertilization); phase II (24 h after fertilization to 6 days after fertilization); and phase III (7-25 days after fertilization). The larvae of both groups showed a high degree of similarity, suggesting that the hybrid larvae showed a high level of heritability from the cachara broodstock. Analysis of the total lipid content provided evidence that there is no alteration in lipid concentration during ontogeny for both groups (i.e., the cachara and hybrids). However, the fatty acid profile showed that during the endogenous feeding period (phase II), when the larvae must use the energy reserves from the mother, the cachara larvae used mainly monounsaturated fatty acids for development. This is typical for most fish species, though notably, the hybrids preferentially used saturated fatty acids. Furthermore, certain specific changes demonstrate unique patterns of energy utilization and structural substrates, which may aid in elucidating the empirical differences reported by fish farmers (i.e., that the hybrids perform better than cacharas in captivity).
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.