7 resultados para Aço inoxidável Corrosão

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The reduction of the pelvic floor muscles (PFM) strength is a major cause of stress urinary incontinence (SUI). Objective: To compare active and passive forces, and vaginal cavity aperture in continent and stress urinary incontinent women. Method: The study included a total of thirty-two women, sixteen continent women (group 1 - G1) and sixteen women with SUI (group 2 - G2). To evaluate PFM passive and active forces in anteroposterior (sagittal plane) and left-right directions (frontal plane) a stainless steel specular dynamometer was used. Results: The anteroposterior active strength for the continent women (mean +/- standard deviation) (0.3 +/- 0.2 N) was greater compared to the values found in the evaluation of incontinent women (0.1 +/- 0.1 N). The left-right active strength (G1=0.43 +/- 0.1 N; G2=0.40 +/- 0.1 N), the passive force (G1=1.1 +/- 0.2 N; G2=1.1 +/- 0.3 N) and the vaginal cavity aperture (G1=21 +/- 3 mm; G2=24 +/- 4 mm) did not differ between groups 1 and 2. Conclusion: The function evaluation of PFM showed that women with SUI had a lower anteroposterior active strength compared to continent women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Implant-abutment connections still present failures in the oral cavity due to the loosening of mechanical integrity by detorque and corrosion of the abutment screws. The objective of this study was to evaluate the detorque of dental abutment screws before and after immersion in fluoridated solutions. Materials and Methods: Five commercial implant-abutment assemblies were assessed in this investigation: (C) ConexËœaoR , (E) EmfilsR , (I) INPR , (S) SINR , and (T) Titanium FixR . The implants were embedded in an acrylic resin and then placed in a holding device. The abutments were first connected to the implants and torqued to 20Ncmusing a handheld torque meter. The detorque values of the abutments were evaluated after 10 minutes. After applying a second torque of 20 Ncm, implant-abutment assemblies were withdrawn every 3 hours for 12 hours in a fluoridated solution over a period of 90 days. After that period, detorque of the abutments was examined. Scanning electronicmicroscopy (SEM) associated to energy dispersive spectroscopy (EDS) was applied to inspect the surfaces of abutments. Results: Detorque values of systems C, E, and I immersed in the fluoridated solution were significantly higher than those of the initial detorque. ANOVA demonstrated no significant differences in detorque values between designs S and T. Signs of localized corrosion could not be detected by SEM although chemical analysis by EDS showed the presence of elements involved in corrosive processes. Conclusion: An increase of detorque values recorded on abutments after immersion in fluoridated artificial saliva solutions was noticed in this study. Regarding chemical analysis, such an increase of detorque can result from a corrosion layer formed between metallic surfaces at static contact in the implant-abutment joint during immersion in the fluoridated solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As fibras cerâmicas se caracterizam por ser um material leve, com alto grau de pureza, baixo armazenamento de calor, baixa condutividade térmica, resistência a choque térmico e alta resistência à corrosão em altas temperaturas. Essas características levam a uma grande procura das indústrias mínero-metalúrgicas e de outros setores para revestimentos de distribuidores, muflas, fornos de aquecimentos, entre outros. Após utilização no processo, por perderem sua capacidade de isolamento, os resíduos gerados precisam de destinação. Esse trabalho enfoca, especificamente, resíduos de lã cerâmica e lã de vidro. Pelo fato de a composição das fibras cerâmicas ser rica em sílica e alumina, efetuou-se uma investigação acerca da atividade pozolânica das mesmas com a cal e o cimento, especificamente CPV ARI, CPII E32 e CPIII 32RS, para avaliação da perspectiva de reciclagem em possível incorporação no concreto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work provides a numerical and experimental investigation of fatigue crack growth behavior in steel weldments including crack closure effects and their coupled interaction with weld strength mismatch. A central objective of this study is to extend previously developed frameworks for evaluation of crack clo- sure effects on FCGR to steel weldments while, at the same time, gaining additional understanding of commonly adopted criteria for crack closure loads and their influence on fatigue life of structural welds. Very detailed non-linear finite element analyses using 3-D models of compact tension C ( T ) fracture spec- imens with center cracked, square groove welds provide the evolution of crack growth with cyclic stress intensity factor which is required for the estimation of the closure loads. Fatigue crack growth tests con- ducted on plane-sided, shallow-cracked C ( T ) specimens provide the necessary data against which crack closure effects on fatigue crack growth behavior can be assessed. Overall, the present investigation pro- vides additional support for estimation procedures of plasticity-induced crack closure loads in fatigue analyses of structural steels and their weldments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tantalum coatings are of particular interest today as promising candidates to replace potentially hazardous electrodeposited chromium coatings for tribological and corrosion resistant applications, such as the internal lining on large-caliber gun barrels. Tantalum coatings have two crystalline phases, α-Ta (body-centered-cubic) and β-Ta (metastable tetragonal) that exhibit relatively different properties. Alpha-Ta is typically preferred for wear and corrosion resistant applications and unfortunately, is very difficult to deposit without the assistance of substrate heating or post-annealing treatments. Furthermore, there is no general consensus on the mechanism which causes α or β to form or if there is a phase transition or transformation from β â α during coating deposition. In this study, modulated pulsed power (MPP) magnetron sputtering was used to deposit tantalum coatings with thicknesses between 2 and 20 μm without external substrate heating. The MPP Ta coatings showed good adhesion and low residual stress. This study shows there is an abrupt β â α phase transition when the coating is 5â7 μm thick and not a total phase transformation. Thermocouple measurements reveal substrate temperature increases as a function of deposition time until reaching a saturation temperature of ~ 388 °C. The importance of substrate temperature evolution on the β â α phase transition is also explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.