46 resultados para subcutaneous fat
Resumo:
The objective of this study was to evaluate effects of feeding monensin (MON) or a multivalent polyclonal antibody preparation (PAP) against several rumen microorganisms on feedlot performance, carcass characteristics, blood gas profile, and rumenitis of Bos indicus biotype (BT) yearling bulls. The study was designed as a completely randomized design with a 3 x 2 factorial arrangement, replicated 4 times, in which 32 yearling bulls of each of 3 BT evaluated (3-way-cross, TC; Canchim, CC; and Nellore, NE) were fed diets containing either MON at 300 mg.d(-1) or PAP at 10 mL.d(-1) across 3 different periods. No significant (P > 0.10) feed additive (FA) main effects were observed for any of the feedlot performance variables and carcass characteristics with the exception of dressing percentage. Yearling bulls receiving PAP had a decreased (P = 0.047) dressing percentage when compared with yearling bulls receiving MON. Significant (P < 0.05) BT main effects were observed for all feedlot performance variables and carcass characteristics with the exception of kidney-pelvic fat expressed in kilograms (P = 0.49) and LM lipids content (P = 0.45). Crossbred yearling bulls (TC and CC) had greater (P < 0.001) ADG, DMI in kilograms, DMI as % of BW, and improved (P = 0.001) G: F when compared with NE yearling bulls. A tendency (P = 0.072) for a FA main effect was observed for rumenitis scores, in which yearling bulls receiving PAP had lesser rumenitis scores than those receiving MON. When the data were disposed as frequency percentage, 55.6% and 45.7% of the rumens from yearling bulls fed PAP and MON were scored between 0 and 1, respectively (0 = no lesions, 10 = severe lesions). Likewise, a significant BT main effect was observed (P = 0.008), where NE yearling bulls had greater rumenitis scores than those of crossbred yearling bulls (TC and CC). No signifi cant FA main effects were observed (P > 0.10) for any of the fatty acids measured in the subcutaneous adipose tissue, with the exception that yearling bulls receiving MON had greater (P < 0.05) concentrations of palmitic acid (16: 0), margaric acid (17: 0), docosapentaenoic acid (22: 5), and docosahexaenoic acid (22: 6) than those yearling bulls receiving PAP. Feeding PAP tended to decrease incidence of rumen lesions and led to similar feedlot performance compared with feeding MON. Thus, PAP is a new technology that presents a possible alternative for ionophores.
Resumo:
Objective The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. Methods Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. Results Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. Conclusion Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.
Resumo:
Introduction: Computerizd tomography (CT) is the gold standard for the evaluation of intra- (IAF) and total (TAF) abdominal fat; however, the high cost of the procedure and exposure to radiation limit its routine use. Objective: To develop equations that utilize anthropometric measures for the estimate of IAF and TAF in obese women with polycystic ovary syndrome (PCOS). Methods: The weight, height, BMI, and abdominal (AC), waist (WC), chest (CC), and neck (NC) circumferences of thirty obese women with PCOS were measured, and their IAF and TAF were analyzed by CT. Results: The anthropometric variables AC, CC, and NC were chosen for the TAF linear regression model because they were better correlated with the fat deposited in this region. The model proposed for TAF (predicted) was: 4.63725 + 0.01483 x AC - 0.00117 x NC - 0.00177 x CC (R-2 = 0.78); and the model proposed for IAF was: IAF (predicted) = 1.88541 + 0.01878 x WC + 0.05687 x NC - 0.01529 x CC (R-2 = 0.51). AC was the only independent predictor of TAF (p < 0.01). Conclusion: The equations proposed showed good correlation with the real value measured by CT, and can be used in clinical practice. (Nutr Hosp. 2012;27:1662-1666) DOI:10.3305/nh.2012.27.5.5933
Resumo:
Background: Several parameters are associated with high bone mineral density (BMD), such as overweight, black background, intense physical activity (PA), greater calcium intake and some medications. The objectives are to evaluate the prevalence and the main aspects associated with high BMD in healthy women. Methods: After reviewing the database of approximately 21,500 BMD scans performed in the metropolitan area of Sao Paulo, Brazil, from June 2005 to October 2010, high BMD (over 1400 g/cm(2) at lumbar spine and/or above 1200 g/cm2 at femoral neck) was found in 421 exams. Exclusion criteria were age below 30 or above 60 years, black ethnicity, pregnant or obese women, disease and/or medications known to interfere with bone metabolism. A total of 40 women with high BMD were included and matched with 40 healthy women with normal BMD, paired to weight, age, skin color and menopausal status. Medical history, food intake and PA were assessed through validated questionnaires. Body composition was evaluated through a GE-Lunar DPX MD + bone densitometer. Radiography of the thoracic and lumbar spine was carried out to exclude degenerative alterations or fractures. Biochemical parameters included both lipid and hormonal profiles, along with mineral and bone metabolism. Statistical analysis included parametric and nonparametric tests and linear regression models. P < 0.05 was considered significant. Results: The mean age was 50.9 (8.3) years. There was no significant difference between groups in relation to PA, smoking, intake of calcium and vitamin D, as well as laboratory tests, except serum C-telopeptide of type I collagen (s-CTX), which was lower in the high BMD group (p = 0.04). In the final model of multivariate regression, a lower fat intake and body fatness as well a better profile of LDL-cholesterol predicted almost 35% of high BMD in women. (adjusted R2 = 0.347; p < 0.001). In addition, greater amounts of lean mass and higher IGF-1 serum concentrations played a protective role, regardless age and weight. Conclusion: Our results demonstrate the potential deleterious effect of lipid metabolism-related components, including fat intake and body fatness and worse lipid profile, on bone mass and metabolism in healthy women.
Resumo:
Analytic methods were applied and validated to measure residues of chlorfenvinphos, fipronil, and cypermethrin in meat and bovine fat, using the QuEChERS method and gas chromatography-mass spectrometry. For the meat, 2 g of sample, 4mL of acetonitrile, 1.6 g of MgSO4, and 0.4 g of NaCl were used in the liquid-liquid partition, while 80 mg of C18, 80 mg of primary and secondary amine and 150 mg of MgSO4 were employed in the dispersive solid-phase extraction. For the fat, 1 g of sample, 5 mL of hexane, 10 mL of water, 10 mL of acetonitrile, 4 g of MgSO4, and 0.5 g of NaCl were used in the liquid-liquid partition and 50 mg of primary and secondary amine and 150 mg of MgSO4 were used in the dispersive solid-phase extraction. The recovery percentages obtained for the pesticides in meat at different concentrations ranged from 81 to 129% with relative standard deviation below 27%. The corresponding results from the fat ranged from 70 to 123% with relative standard deviation below 25%. The methods showed sensitivity, precision, and accuracy according to EPA standards and quantification limits below the maximum residue limit established by European Union, except for chlorfenvinphos in the fat.
Resumo:
Objective: Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Methods: Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Results: Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. Conclusion: The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The double burden of obesity and underweight is increasing in developing countries and simple methods for the assessment of fat mass in children are needed. Aim: To develop and validate a new anthropometric predication equation for assessment of fat mass in children. Subjects and methods: Body composition was assessed in 145 children aged 9.8 +/- 1.3 (SD) years from Sao Paulo, Brazil using dual energy X-ray absorptiometry (DEXA) and skinfold measurements. The study sample was divided into development and validation sub-sets to develop a new prediction equation for FM (PE). Results: Using multiple linear regression analyses, the best equation for predicting FM (R-2 - 0.77) included body weight, triceps skinfold, height, gender and age as independent variables. When cross-validated, the new PE was valid in this sample (R-2 = 0.80), while previously published equations were not. Conclusion: The PE was more valid for Brazilian children that existing equations, but further studies are needed to assess the validity of this PE in other populations.
Resumo:
Decreased activity of the lumbar stabilizer muscles has been identified in individuals with sway-back posture. Disuse can predispose these muscles to atrophy, which is characterized by a reduced cross-sectional area (CSA) and by fat infiltration. The aim of this study was to evaluate the amount of fat infiltration in the lumbar multifidus and lumbar erector spinae muscles as a sign of the muscle atrophy in individuals with sway-back posture, with and without low back pain. Forty-five sedentary individuals between 16 and 40 years old participated in this study. The sample was divided into three groups: symptomatic sway-back (SSBG) (n = 15), asymptomatic sway-back (ASBG) (n = 15), and control (CG) (n = 15). The individuals were first subjected to photographic analysis to classify their postures and were then referred for a magnetic resonance imaging (MRI) examination of the lumbar spine. The total (TCSA) and functional (FCSA) cross-sectional areas of the lumbar erector spinae together with lumbar multifidus and isolated lumbar multifidus muscles were measured from L1 to S1. The amount of fat infiltration was estimated as the difference between the TCSA and the FCSA. Greater fat deposition was observed in the lumbar erector spinae and lumbar multifidus muscles of the individuals in the sway-back posture groups than in the control group. Pain may have contributed to the difference in the amount of fat observed in the groups with the same postural deviation. Similarly, sway-back posture may have contributed to the tissue substitution relative to the control group independently of low back pain. The results of this study indicate that individuals with sway-back posture may be susceptible to morphological changes in their lumbar erector spinae and lumbar multifidus muscles, both due to the presence of pain and as a consequence of their habitual posture.
Resumo:
Abstract Background Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the β2-adrenoceptor gene. Methods A total of 162 preselected individuals were genotyped for the Glu27Gln β2-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 ± 2 years; 64 ± 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 ± 3 years; 65 ± 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat. Results The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 ± 0.1 vs. 2.4 ± 0.2; P = 0.27, respectively), but reduced FVC responses to mental stress (1.5 ± 0.2 vs. 0.8 ± 0.2 units; P = 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 ± 0.1 vs. Gln27Gln = 2.1 ± 0.1 units; P = 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 ± 0.4 vs. 1.0 ± 0.3 units; P = 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 ± 0.4 vs. 1.2 ± 0.4; P = 0.66, respectively). Conclusion These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the β2-adrenoceptor gene.
Resumo:
The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (?=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.
Resumo:
Background: Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives: To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods: 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. Results: The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Conclusion: Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases
Resumo:
As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity