33 resultados para thiobarbituric acid reactive substance
Resumo:
Increased neuronal oxidative stress (OxS) induces deleterious effects on signal transduction, structural plasticity and cellular resilience, mainly by inducing lipid peroxidation in membranes, proteins and genes. Major markers of OxS levels include the thiobarbituric acid reactive substances (TBARS) and the enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase. Lithium has been shown to prevent and/or reverse DNA damage, free-radical formation and lipid peroxidation in diverse models. This study evaluates OxS parameters in healthy volunteers prior to and following lithium treatment. Healthy volunteers were treated with lithium in therapeutic doses for 2-4 weeks. Treatment with lithium in healthy volunteers selectively altered SOD levels in all subjects. Furthermore, a significant decrease in the SOD/CAT ratio was observed following lithium treatment, wich was associated with decreased OxS by lowering hydrogen peroxide levels. This reduction in the SOD/CAT ratio may lead to lower OxS, indicated primarily by a decrease in the concentration of cell hydrogen peroxide. Overall, the present findings indicate a potential role for the antioxidant effects of lithium in healthy subjects, supporting its neuroprotective profile in bipolar disorder (BD) and, possibly, in neurodegenerative processes.
Resumo:
OBJECTIVE: Volume replacement in septic patients improves hemodynamic stability. This effect can reduce the inflammatory response. The objective of this study was to evaluate the effect of 7.5% hypertonic saline solution versus 0.9% normal saline solution for volume replacement during an inflammatory response in endotoxemic rats. METHODS: We measured cytokines (serum and gut), nitrite, and lipid peroxidation (TBARS) as indicators of oxidative stress in the gut. Rats were divided into four groups: control group (C) that did not receive lipopolysaccharide; lipopolysaccharide injection without treatment (LPS); lipopolysaccharide injection with saline treatment (LPS + S); and lipopolysaccharide injection with hypertonic saline treatment (LPS + H). Serum and intestine were collected. Measurements were taken at 1.5, 8, and 24 h after lipopolysaccharide administration. RESULTS: Of the four groups, the LPS + H group had the highest survival rate. Hypertonic saline solution treatment led to lower levels of IL-6, IL-10, nitric oxide, and thiobarbituric acid reactive substances compared to 0.9% normal saline. In addition, hypertonic saline treatment resulted in a lower mortality compared to 0.9% normal saline treatment in endotoxemic rats. Volume replacement reduced levels of inflammatory mediators in the plasma and gut. CONCLUSION: Hypertonic saline treatment reduced mortality and lowered levels of inflammatory mediators in endotoxemic rats. Hypertonic saline also has the advantage of requiring less volume replacement.
Resumo:
The effect of combinations of sage, oregano and honey on lipid oxidation in cooked chicken meat during refrigeration at 4 degrees C for 96 h was determined. Chicken samples (thigh and breast) were then separated into five groups; control; butylated hydroxytoluene; oregano + sage; oregano + sage + 5%honey and oregano + sage + 10%honey. Quantitative measurements of thiobarbituric acid reactive substances, conjugated dienes, hexanal, fatty acids, cholesterol and cholesterol oxides were used as indicators of lipid oxidation. Acceptability and preference were also evaluated. The effectiveness of the natural antioxidants for reducing the velocity of lipid oxidation in cooked chicken thigh and breast was demonstrated after 48 and 96 h of refrigeration at 4 degrees C. The treatments that presented the lowest hexanal values after 96 h of refrigeration were oregano + sage + 5%honey and oregano + sage + 10%honey. Only traces of free cholesterol oxides were found (25-OH, 7-k, 7 alpha-OH and 7 beta-OH). The natural antioxidants protected cooked chicken meat from oxidation processes and resulted in great acceptability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to investigate the effects of the use of chlorine or ozone as sanitizing agents in the water of chicken immersion chilling, using the residual levels usually applied in Brazil (1.5 ppm), comparing the effects of these treatments on the microbiological, physicochemical, and sensory characteristics of carcasses. Chicken carcasses were chilled in water (4 degrees C) with similar residual levels of ozone and chlorine until reaching temperatures below 7 degrees C (around 45 min). The stability of carcasses was assessed during 15 days of storage at 2 +/- 1 degrees C. Microbiological, surface color (L*, a*, b* parameters), pH value, lipid oxidation (thiobarbituric acid reactive substances index), and sensory evaluation (on a 9-point hedonic scale for odor and appearance) analyses were carried out. The presence of Salmonella was not detected, coagulase-positive staphylococci counts were below 10(2) CFU/ml of rinse fluid, and Escherichia coil and total coliform counts were below 10(5) CFU/ml of rinse fluid until the end of the storage period for both treatments. Psychrotrophic microorganism counts did not differ (P > 0.05) between chlorine and ozone treatments, and both values were near 10(9) CFU/ml of rinse fluid after 15 days at 4 +/- 1 degrees C. pH values did not differ between treatments (P > 0.05) or during the storage period (P > 0.05). In addition, neither chlorine nor ozone treatment showed differences (P > 0.05) in the lipid oxidation of carcasses; however, the thiobarbituric acid reactive substances index of both treatments increased (P <= 0.05) during the storage period, reaching values of approximately 0.68 mg of malonaldehyde per kg. Samples from both treatments did not differ (P > 0.05) in their acceptance scores for odor and overall appearance, but in the evaluation of color, ozone showed an acceptance score significantly higher (P <= 0.05) than that for the chlorine treatment. In general, under the conditions tested, ozone showed results similar to the results for chlorine in the disinfection of chicken carcasses in the immersion chilling, which may indicate its use as a substitute for chlorine in poultry slaughterhouses.
Resumo:
Background: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. Methodology/Principal Findings: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NOx-), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N-epsilon-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NOx- levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NOx- levels were partially restored. Conclusion: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery.
Resumo:
Background. Acute kidney injury (AKI) following prolonged laparoscopy is a documented phenomenon. Carbon dioxide pneumoperitoneum induces oxidative stress. Previous experimental studies have shown that the antioxidant, N-acetylcysteine, protects the rat from AKI following ischemia-reperfusion. The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) on rat renal function after prolonged pneumoperitoneum. Methods. Normal rats treated or not with NAC were submitted to abdominal CO2 insufflation of 10 mmHg, at short and long periods of time of 1 and 3 h, respectively, and evaluated at 24, 72 h, and 1 wk after deinsufflation. Glomerular filtration rate (GFR) was measured by inulin clearance and oxidative stress was evaluated by serum thiobarbituric acid reactive substances (TBARS) Results. No significant alterations in GFR were observed in normal animals submitted to the pneumoperitoneum of 1 h and evaluated after 24 h desufflation. With 3 h of pneumoperitoneum, a significant and progressive decrease in GFR occurred 24 and 72 h after desufflation with an increase in serum TBARS. GFR returned to normal levels a week later. In the NAC-treated rats, a complete protection against GFR drops was observed 24 and 72 h following 3 h of pneumoperitoneum associated with a decrease in TBARS. Conclusion. These results suggest that NAC protects against acute kidney injury following prolonged pneumoperitoneum. These findings have significant clinical implications. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress. Methods Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels. Results The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001). Conclusion Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.
Resumo:
OBJECTIVE: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. METHODS: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. RESULTS: Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001). The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione). Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040) and lower hemoglobin F concentrations(r = -0.52; p = 0.0067). On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111) and positively associated with hemoglobin F values (r = 0.56; p = 0.0031). CONCLUSION: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.
Resumo:
Bucioli, SA, de Abreu, LC, Valenti, VE, and Vannucchi, H. Carnitine supplementation effects on nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. J Strength Cond Res 26(6): 1695-1700, 2012-Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg.kg(-1)) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1:0.16 +/- 0.02 vs. 2:0.34 +/- 0.07 vs. 3:0.1 +/- 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1:23 +/- 4 vs. 2:23 +/- 2 vs. 3:58 +/- 9 mu mol per gram of protein; p, 0.0001); however, it did not change renal vitamin E (1:24 +/- 5 vs. 2:27 +/- 1 vs. 3:28 +/- 5 mu M per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.
Cerebral White Matter Oxidation and Nitrosylation in Young Rodents With Kaolin-Induced Hydrocephalus
Resumo:
Hydrocephalus is associated with reduced blood flow in periventricular white matter. To investigate hypoxic and oxidative damage in the brains of rats with hydrocephalus, kaolin was injected into the cisterna magna of newborn 7- and 21-day-old Sprague-Dawley rats, and ventricle size was assessed by magnetic resonance imaging at 7, 21, and 42 days of age. In-situ evidence of hypoxia in periventricular capillaries and glial cells was shown by pimonidazole hydrochloride binding. Biochemical assay of thiobarbituric acid reaction and immunohistochemical detection of malondialdehyde and 4-hydroxy-2-nonenal indicated the presence of lipid peroxidation in white matter. Biochemical assay of nitrite indicated increased nitric oxide production. Nitrotyrosine immunohistochemistry showed nitrosylated proteins in white matter reactive microglia and astrocytes. Activities of the antioxidant enzymes catalase and glutathione peroxidase were not increased, and altered hypoxia-inducible factor 1 alpha was not detected by quantitative reverse transcription-polymerase chain reaction. Cerebral vascular endothelial growth factor expression determined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay was not changed, but vascular endothelial growth factor immunoreactivity was increased in reactive astrocytes of hydrocephalic white matter. To determine if nitric oxide synthase is involved in the pathogenesis, we induced hydrocephalus in 7-day-old wild-type and neuronal nitric oxide synthase-deficient mice. At 7 days, the wild-type and mutant mice exhibited equally severe ventriculomegaly and no behavioral differences, although increased glial fibrillary acidic protein was less in the mutant mice. We conclude that hypoxia, via peroxidation and nitrosylation, contributes to brain changes in young rodents with hydrocephalus and that compensatory mechanisms are negligible.
Resumo:
Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Increased uric acid (UA) is strongly linked to cardiovascular disease. However, the independent role of UA is still debated because it is associated with several cardiovascular risk factors including obesity and metabolic syndrome. This study assessed the association of UA with increased high-sensitivity C-reactive protein (hs-CRP), increased ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL), sonographically detected hepatic steatosis, and their clustering in the presence and absence of obesity and metabolic syndrome. We evaluated 3,518 employed subjects without clinical cardiovascular disease from November 2008 through July 2010. Prevalence of tis-CRP >= 3 mg/L was 19%, that of TG/HDL >= 3 was 44%, and that of hepatic steatosis was 43%. In multivariable logistic regression after adjusting for traditional cardiovascular risk factors and confounders, highest versus lowest UA quartile was associated with hs-CRP >= 3 mg/L (odds ratio [OR] 1.52, 95% confidence interval [CI] 1.01 to 2.28, p = 0.04), TG/HDL >= 3 (OR 3.29, 95% CI 2.36 to 4.60, p <0.001), and hepatic steatosis (OR 3.10, 95% CI 2.22 to 4.32, p <0.001) independently of obesity and metabolic syndrome. Association of UA with hs-CRP >= 3 mg/L became nonsignificant in analyses stratified by obesity. Ascending UA quartiles compared to the lowest UA quartile demonstrated a graded increase in the odds of having 2 or 3 of these risk conditions and a successive decrease in the odds of having none. In conclusion, high UA levels were associated with increased TG/HDL and hepatic steatosis independently of metabolic syndrome and obesity and with increased hs-CRP independently of metabolic syndrome. (C) 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;110:1787-1792)
Resumo:
Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (similar to 2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.