28 resultados para structural phase transitions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse the phase diagram of a quantum mean spherical model in terms of the temperature T, a quantum parameter g, and the ratio p = -J(2)/J(1) where J(1) > 0 refers to ferromagnetic interactions between first-neighbour sites along the d directions of a hypercubic lattice, and J(2) < 0 is associated with competing anti ferromagnetic interactions between second neighbours along m <= d directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g = 0 space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical border, g(c) = g(c) (p) for d >= 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p = 1/4. 2012 (C) Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-purity niobium powders can be obtained from the well-known hydride-dehydride (HDH) process. The aim of this work was the investigation of the structural phase transition of the niobium hydride to niobium metal as function of temperature, heating rate and time. The niobium powder used in this work was obtained by high-temperature hydriding of niobium machining chips followed by conventional ball milling and sieving. X-ray diffraction measurements were carried out in vacuum using a high-temperature chamber coupled to an X-ray diffractometer. During the dehydriding process, it is possible to follow the phase transition from niobium hydride to niobium metal starting at about 380 degrees C for a heating rate of 20 degrees C/min. The heating rate was found to be an important parameter, since complete dehydriding was obtained at 490 degrees C for a heating rate of 20 degrees C/min. The higher dehydriding rate was found at 500 degrees C. Results contribute to a better understanding of the kinetics of thermal decomposition of niobium hydride to niobium metal. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A non-Markovian one-dimensional random walk model is studied with emphasis on the phase-diagram, showing all the diffusion regimes, along with the exactly determined critical lines. The model, known as the Alzheimer walk, is endowed with memory-controlled diffusion, responsible for the model's long-range correlations, and is characterized by a rich variety of diffusive regimes. The importance of this model is that superdiffusion arises due not to memory per se, but rather also due to loss of memory. The recently reported numerically and analytically estimated values for the Hurst exponent are hereby reviewed. We report the finding of two, previously overlooked, phases, namely, evanescent log-periodic diffusion and log-periodic diffusion with escape, both with Hurst exponent H = 1/2. In the former, the log-periodicity gets damped, whereas in the latter the first moment diverges. These phases further enrich the already intricate phase diagram. The results are discussed in the context of phase transitions, aging phenomena, and symmetry breaking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetization measurements were performed on CeCoIn5 at temperatures down to 20 mK and magnetic fields up to 17 T applied along different crystallographic orientations. For field configurations nearly parallel to the ab plane (theta less than or similar to 40 degrees and T <= 50 mK), we have found an intriguing vortex dynamics regime revealed by a hysteretic and metastable anomalous peak effect (APE), which gives evidence of surface barrier effects enhanced by antiferromagnetic fluctuations in the mixed state of CeCoIn5. Furthermore, we have observed crossover features in the torque and magnetization traces at fields below H-c2, which are consistent with vortices lattice phase transitions and with the anomalies speculated to be the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in CeCoIn5. All of the above features were found to be dramatically perturbed in Ce0.98Gd0.02CoIn5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A commercial casein hydrolysate was microencapsulated in liposomes produced with non-purified soy lecithin, cryoprotected with two different disaccharides and lyophilized. The encapsulation efficiency of casein hydrolysate ranged from 30 to 40%. The powders were analyzed by differential scanning calorimetry (DSC), scanning electron micrography (SEM), infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). DSC data revealed the presence of an exothermal transition in empty lyophilized liposomes, which was ascribed to the presence of a quasicrystalline lamellar phase (intermediary characteristics between the L-beta and L-c phases). The addition of peptides to the liposomal system caused the disappearance of this exothermic phenomenon, as they were located in the polar headgroup portion of the bilayer, causing disorder and preventing the formation of the quasicrystalline phase. Infrared data indicated the presence of the peptides in the lyophilized formulations and showed that the cryoprotectants interacted effectively with the polar heads of phospholipids in the bilayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exact results on particle densities as well as correlators in two models of immobile particles, containing either a single species or else two distinct species, are derived. The models evolve following a descent dynamics through pair annihilation where each particle interacts once at most throughout its entire history. The resulting large number of stationary states leads to a non-vanishing configurational entropy. Our results are established for arbitrary initial conditions and are derived via a generating function method. The single-species model is the dual of the 1D zero-temperature kinetic Ising model with Kimball-Deker-Haake dynamics. In this way, both in finite and semi-infinite chains and also the Bethe lattice can be analysed. The relationship with the random sequential adsorption of dimers and weakly tapped granular materials is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polarized magnetophotoluminescence is employed to study the energies and occupancies of four lowest Landau levels in a couple quantum Hall GaAs/AlGaAs double quantum well. As a result, a magnetic field-induced redistribution of charge over the Landau levels manifesting to the continuous formation of the charge density wave and direct evidence for the symmetric-antisymmetric gap shrinkage at v = 3 are found. The observed interlayer charge exchange causes depolarization of the ferromagnetic ground state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An out of equilibrium Ising model subjected to an irreversible dynamics is analyzed by means of a stochastic dynamics, on a effort that aims to understand the observed critical behavior as consequence of the intrinsic microscopic characteristics. The study focus on the kinetic phase transitions that take place by assuming a lattice model with inversion symmetry and under the influence of two competing Glauber dynamics, intended to describe the stationary states using the entropy production, which characterize the system behavior and clarifies its reversibility conditions. Thus, it is considered a square lattice formed by two sublattices interconnected, each one of which is in contact with a heat bath at different temperature from the other. Analytical and numerical treatments are faced, using mean-field approximations and Monte Carlo simulations. For the one dimensional model exact results for the entropy production were obtained, though in this case the phase transition that takes place in the two dimensional counterpart is not observed, fact which is in accordance with the behavior shared by lattice models presenting inversion symmetry. Results found for the stationary state show a critical behavior of the same class as the equilibrium Ising model with a phase transition of the second order, which is evidenced by a divergence with an exponent µ ¼ 0:003 of the entropy production derivative.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly charged vesicles of the saturated anionic lipid dimyristoyl phosphatidylglycerol (DMPG) in low ionic strength medium exhibit a very peculiar thermo-structural behavior. Along a wide gel-fluid transition region, DMPG dispersions display several anomalous characteristics, like low turbidity, high electrical conductivity and viscosity. Here, static and dynamic light scattering (SLS and DLS) were used to characterize DMPG vesicles at different temperatures. Similar experiments were performed with the largely studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC). SLS and DLS data yielded similar dimensions for DMPC vesicles at all studied temperatures. However, for DMPG, along the gel-fluid transition region, SLS indicated a threefold increase in the vesicle radius of gyration, whereas the hydrodynamic radius, as obtained from DLS, increased 30% only. Despite the anomalous increase in the radius of gyration, DMPG lipid vesicles maintain isotropy, since no light depolarization was detected. Hence, SLS data are interpreted regarding the presence of isotropic vesicles within the DMPG anomalous transition, but highly perforated vesicles, with large holes. DLS/SLS discrepancy along the DMPG transition region is discussed in terms of the interpretation of the Einstein-Stokes relation for porous vesicles. Therefore, SLS data are shown to be much more appropriate for measuring porous vesicle dimensions than the vesicle diffusion coefficient. The underlying nanoscopic process which leads to the opening of pores in charged DMPG bilayer is very intriguing and deserves further investigation. One could envisage biotechnological applications, with vesicles being produced to enlarge and perforate in a chosen temperature and/or pH value. (C) 2012 Elsevier Ireland Ltd. All rights reserved.