47 resultados para spin reorientation transitions
Resumo:
We have performed an ab initio theoretical investigation of substitutional Mn(Zn) atoms in planar structures of ZnO, viz., monolayer [(ZnO)(1)] and bilayer [(ZnO)(2)] systems. Due to the 2-D quantum confinement effects, in those Mn -doped (ZnO)(1) and (ZnO)(2) structures, the antiferromagnetic (AFM) coupling between (nearest neighbor) Mn(Zn) impurities have been strengthened when compared with the one in ZnO bulk systems. On the other hand, we find that the magnetic state of these systems can be tuned from AFM to FM by adding holes, which can be supplied by a p-type doping or even photoionization processes. Whereas, upon addition of electrons (n-type doping), the system keeps its AFM configuration.
Resumo:
Nickel oxide nonoparticles successfully synthesized by a polymer percursor method are studied in this work. The analysis of X-ray powder diffraction data provides a mean crystallite size of 22 +/- 2 nm which is in a good agreement with the mean size estimated from transmission electron microscopy images. Whereas the magnetization (M) vs. magnetic field (H) curve obtained at 5 K is consistent with a ferromagnetic component which coexists with an antiferromagnetic component, the presence of two peaks in the zero-field-cooled trace suggests the occurrence of two blocking process. The broad maximum at high temperature was associated with the thermal relaxation of uncompensated spins at the particle core and the low temperature peak was assigned to the freeze of surface spins clusters. Static and dynamic magnetic results suggest that the correlations of surface spins clusters show a spin-glass-like below T-g = 7.3 +/- 0.1 K with critical exponents zv = 9.7 +/- 0.5 and beta = 0.7 +/- 0.1, which are consistent with typical reported for spin-glass systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.
Resumo:
Deutsche Forschungsgemeinschaft [SFB 858]
Resumo:
Collateral circulation, defined as the supplementary vascular network that maintains cerebral blood flow (CBF) when the main vessels fail, constitutes one important defense mechanism of the brain against ischemic stroke. In the present study, continuous arterial spin labeling (CASL) was used to quantify CBF and obtain perfusion territory maps of the major cerebral arteries in spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) controls. Results show that both WKY and SHR have complementary, yet significantly asymmetric perfusion territories. Right or left dominances were observed in territories of the anterior (ACA), middle and posterior cerebral arteries, and the thalamic artery. Magnetic resonance angiography showed that some of the asymmetries were correlated with variations of the ACA. The leptomeningeal circulation perfusing the outer layers of the cortex was observed as well. Significant and permanent changes in perfusion territories were obtained after temporary occlusion of the right middle cerebral artery in both SHR and WKY, regardless of their particular dominance. However, animals with right dominance presented a larger volume change of the left perfusion territory (23 +/- 9%) than animals with left dominance (7 +/- 5%, P<0.002). The data suggest that animals with contralesional dominance primarily safeguard local CBF values with small changes in contralesional perfusion territory, while animals with ipsilesional dominance show a reversal of dominance and a substantial increase in contralesional perfusion territory. These findings show the usefulness of CASL to probe the collateral circulation.
Resumo:
Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is amagnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4 f(7) to 4 f(6)5d(1) bands, namely involving 5d(t(2g)) and 5d(e(g)) states.
Resumo:
We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group scheme. DOI: 10.1103/PhysRevB.86.214204
Resumo:
We report STAR measurements of the longitudinal double-spin asymmetry A(LL), the transverse singlespin asymmetry A(N), and the transverse double-spin asymmetries A(Sigma) and A(TT) for inclusive jet production at mid-rapidity in polarized p + p collisions at a center-of-mass energy of root s = 200 GeV. The data represent integrated luminosities of 7.6 pb(-1) with longitudinal polarization and 1.8 pb(-1) with transverse polarization, with 50%-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A(N), A(Sigma), or A(TT) at mid-rapidity. Recent model calculations indicate the A(N) results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A(LL) significantly improves the knowledge of gluon polarization in the nucleon.
Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase
Resumo:
Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity-onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder-order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder-order cycle of the small domain as a "time-delay loop," which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Intensity of the 150 degrees C thermoluminescence peak of beta-irradiated carbonated synthetic A-type hydroxyapatite is approximately 12 times higher than that of the noncarbonated material. Deconvolution of the glow curve showed that this peak is a result of a trap distribution. An attempt was made to relate this thermoluminescence peak enhanced by carbonation with the ESR signal of the CO2- radical in natural or synthetic hydroxyapatite. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study the effects of spin accumulation (inside reservoirs) on electronic transport with tunneling and reflections at the gates of a quantum dot. Within the stub model, the calculations focus on the current-current correlation function for the flux of electrons injected into the quantum dot. The linear response theory used allows us to obtain the noise power in the regime of thermal crossover as a function of parameters that reveal the spin polarization at the reservoirs. The calculation is performed employing diagrammatic integration within the universal groups (ensembles of Dyson) for a nonideal, nonequilibrium chaotic quantum dot. We show that changes in the spin distribution determine significant alterations in noise behavior at values of the tunneling rates close to zero, in the regime of strong reflection at the gates.
Resumo:
We studied the spin-polarized charge densities in II-VI-based diluted magnetic superlattices formed of p-doped ZnTe:Mg/ZnTe:TM/ZnTe:Mg non-magnetic/magnetic/non-magnetic layers, with TM standing for transition metal. The calculations were performed within a self-consistent k.p method, in which are also taken into account the exchange correlation effects in the local density approximation. Our results show a limit for the width of the non-magnetic layer for which the difference between the opposite spin charge densities is maximized, indicating the best conditions to obtain full polarization by varying the TM content. We also discuss these effects in the calculated photoluminescence spectra. Our findings point to the possibility of engineering the spin-polarized charge distribution by varying the widths of the magnetic and non-magnetic layers and/or varying the TM concentration in the magnetic layers, thus providing a guide for future experiments. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.
Resumo:
In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.