37 resultados para skin, extracellular matrix, poly(lactic-co-glycolic acid), collagen, tissue engineering
Resumo:
Extracellular matrix (ECM) composition has an important role in determining airway structure. We postulated that ECM lung composition of chronic obstructive pulmonary disease (COPD) patients differs from that observed in smoking and nonsmoking subjects without airflow obstruction. We determined the fractional areas of elastic fibres, type-I, -III and -IV collagen, versican, decorin, biglycan, lumican, fibronectin and tenascin in different compartments of the large and small airways and lung parenchyma in 26 COPD patients, 26 smokers without COPD and 16 nonsmoking control subjects. The fractional area of elastic fibres was higher in non-obstructed smokers than in COPD and nonsmoking controls, in all lung compartments. Type-I collagen fractional area was lower in the large and small airways of COPD patients and in the small airways of non-obstructed smokers than in nonsmokers. Compared with nonsmokers, COPD patients had lower versican fractional area in the parenchyma, higher fibronectin fractional area in small airways and higher tenascin fractional area in large and small airways compartments. In COPD patients, significant correlations were found between elastic fibres and fibronectin and lung function parameters. Alterations of the major ECM components are widespread in all lung compartments of patients with COPD and may contribute to persistent airflow obstruction.
Resumo:
In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and II, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility.
Resumo:
Abstract Background Adhesion to extracellular matrix (ECM) components has been implicated in the proliferative and invasive properties of tumor cells. We investigated the ability of C6 glioma cells to attach to ECM components in vitro and described the regulatory role of glycosaminoglycans (GAGs) on their adhesion to the substrate, proliferation and migration. Results ECM proteins (type IV collagen, laminin and fibronectin) stimulate rat C6 glioma cell line adhesion in vitro, in a dose-dependent manner. The higher adhesion values were achieved with type IV collagen. Exogenous heparin or chondroitin sulfate impaired, in a dose-dependent manner the attachment of C6 glioma cell line to laminin and fibronectin, but not to type IV collagen. Dextran sulfate did not affect C6 adhesion to any ECM protein analyzed, indicating a specific role of GAGs in mediating glioma adhesion to laminin and fibronectin. GAGs and dextran sulfate did not induce C6 glioma detachment from any tested substrate suggesting specific effect in the initial step of cell adhesion. Furthermore, heparin and chondroitin sulfate impaired C6 cells proliferation on fibronectin, but not on type IV collagen or laminin. In contrast, both GAGs stimulate the glioma migration on laminin without effect on type IV collagen or fibronectin. Conclusion The results suggest that GAGs and proteoglycans regulate glioma cell adhesion to ECM proteins in specific manner leading to cell proliferation or cell migration, according to the ECM composition, thus modulating tumor cell properties.
Resumo:
Abstract Background In this study the effect of myenteric denervation induced by benzalconium chloride (BAC) on distribution of fibrillar components of extracellular matrix (ECM) and inflammatory cells was investigated in gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Rats were divided in four experimental groups: non-denervated (I) and denervated stomach (II) without MNNG treatment; non-denervated (III) and denervated stomachs (IV) treated with MNNG. For histopathological, histochemical and stereological analysis, sections of gastric fragments were stained with Hematoxylin-Eosin, Picrosirius-Hematoxylin, Gomori reticulin, Weigert's Resorcin-Fuchsin, Toluidine Blue and Alcian-Blue/Safranin (AB-SAF). Results BAC denervation causes an increase in the frequency of reticular and elastic fibers in the denervated (group II) compared to the non-denervated stomachs (group I). The treatment of the animals with MNNG induced the development of adenocarcinomas in non-denervated and denervated stomachs (groups III and IV, respectively) with a notable increase in the relative volume of the stroma, the frequency of reticular fibers and the inflammatory infiltrate that was more intense in group IV. An increase in the frequency of elastic fibers was observed in adenocarcinomas of denervated (group IV) compared to the non-denervated stomachs (group III) that showed degradation of these fibers. The development of lesions (groups III and IV) was also associated with an increase in the mast cell population, especially AB and AB-SAF positives, the latter mainly in the denervated group IV. Conclusions The results show a strong association in the morphological alteration of the ECM fibrillar components, the increased density of mast cells and the development of tumors induced by MNNG in the non-denervated rat stomach or denervated by BAC. This suggests that the study of extracellular and intracellular components of tumor microenvironment contributes to understanding of tumor biology by action of myenteric denervation.
Resumo:
Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling
Resumo:
A theoretical approach is used here to explain experimental results obtained from the electrosynthesis of polypyrrole-2-carboxylic acid (PPY-2-COOH) films in nonaqueous medium. An analysis of the Fukui function (reactivity index) indicates that the monomer (pyrrole-2-carboxylic acid, PY-2-COOH), and dimers and trimers are oxidized in the C4 or C5 positions of the heterocyclic ring of the PY-2-COOH structure. After calculating the heat of formation using semiempirical Austin Model 1 post-Hartree-Fock parameterization for dimer species, both C4 and C5 positions adjacent to the aromatic rings of PPY-2-COOH were considered the most susceptible ones to oxidative coupling reactions. The ZINDO-S/CI semiempirical method was used to simulate the electronic transitions typically seen in the UV-VIS-NIR range in monomer and oligomers with different conjugation lengths. The use of an electrochemical quartz crystal microbalance provides sufficient information to propose a polymerization mechanism of PY-2-COOH based on molecular modeling and experimental results.
Resumo:
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.
Resumo:
This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Resumo:
The course of leprosy depends of the host immune response which ranges from the lepromatous pole (LL) to the tuberculoid pole (TT). A comparative study was conducted in 60 patients with the LL and TT The results showed a mean expression of TGF-beta of 339 +/- 99.4 cells/field for TT and of 519.2 +/- 68.2 cells/field for LL. Frequency of apoptosis was 6.3 +/- 1.8 in TT and 14.0 +/- 6.1 in LL. A correlation (p = 0.0251) between TGF-beta and caspase-3 in the LL was found. This finding indicates a role of TGF-beta and apoptosis in the immune response in leprosy. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-beta 1 and plasminogen activator inhibitor-1, and with a significant reduction in a-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1 beta- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-beta 1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-beta 1, suggesting that it may have therapeutic use in CKD treatment.
Resumo:
A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.
Resumo:
Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012
Resumo:
This proof-of-concept study assessed whether the reduction of the degradation of the demineralized organic matrix (DOM) by pre-treatment with protease inhibitors (PI) is effective against dentin matrix loss. Bovine dentin slices were demineralized with 0.87 M citric acid, pH 2.3, for 36 hrs. In sequence, specimens were treated or not (UT, untreated) for 1 min with gels containing epigallocatechin 3-gallate (EGCG, 400 A mu M), chlorhexidine (CHX, 0.012%), FeSO4 (1 mM), NaF (1.23%), or no active compound (P, placebo). Specimens were then stored in artificial saliva (5 days, 37 degrees C) with the addition of collagenase (Clostridium histolyticum, 100 U/mL). We analyzed collagen degradation by assaying hydroxyproline (HYP) in the incubation solutions (n = 5) and evaluated the dentin matrix loss by profilometry (n = 12). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Treatment with gels containing EGCG, CHX, or FeSO4 led to significantly lower HYP concentrations in solution and dentin matrix loss when compared with the other treatments. These results strongly suggest that the preventive effects of the PI tested against dentin erosion are due to their ability to reduce the degradation of the DOM.
Resumo:
This study evaluated the influence of fluoride on cell viability and activity of matrix metalloproteinases (MMP) -2 and -9 secreted by preosteoblasts. Preosteoblasts (MC3T3-E1 murine cell line) were cultured in MEM medium supplement with 10% Fetal Bovine Serum (FBS) and nucleosides/ribonucleosides without ascorbic acid. Adherent cells were treated with different concentrations of F (as sodium fluoride-NaF) in medium (5 x 10-6 M, 10-5 M, 10-4 M and 10-3 M) for 24, 48, 72 and 96 h at 37ºC, 5% CO2. Control cells were cultivated in MEM only. After each period, preosteoblast viability was assessed by MTT assay. MMP-2 and -9 activities were performed by gel zymography. Also, alkaline phosphatase (ALP) activity was quantified by colorimetry in all experimental groups. It was shown that cultured cells with the highest dose of F (10-3 M) for 96 h decreased preosteoblast viability while lower doses of F did not alter it, when compared to untreated cells. No differences were observed in ALP activity among groups. Moreover, compared to control, the treatment of cells with F at low dose slightly increased MMP-2 and -9 activities after 24 h. It was concluded that F modulates preosteoblast viability in a dose-dependent manner and also may regulate extracellular matrix remodeling.