50 resultados para monosodium glutamate
Resumo:
Objective: The aim of this study is to investigate the effects of pregabalin on the behavior of rats under the influence of ketamine, an NMDA receptor antagonist that mimics the symptoms of schizophrenia. Methods: Rats were injected with saline or 25 mg/kg ketamine intraperitoneally. After that, behavior modifications were investigated by the evaluation of stereotypy and hyperlocomotion, after treating rats with pregabalin (at doses of 30 mg/kg or 100 mg/kg) or placebo (saline solution). Results: The administration of pregabalin reduced ketamine-induced hyperlocomotion. However, neither doses of pregabalin had a significant effect on ketamine-induced stereotypy. Conclusion: This is the first study to investigate the effects of pregabalin using an animal model of psychosis. Furthermore, our results indicate that behavioral changes induced by ketamine in rats can be reversed with the use of pregabalin, suggesting its potential to treat psychotic symptoms.
Resumo:
Objective Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)derived leukotriene B4 (LTB4) in driving tissue inflammation and hypernociception in a murine model of gout. Methods. Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1 beta (IL-1 beta), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB4 activity, cytokine (IL-1 beta, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. Results. Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophildependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1 beta/MyD88-dependent manner. LTB4 was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1 beta production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB4 after MSU crystal injection, and LTB4 was relevant in the MSU crystalinduced maturation of IL-1 beta. Mechanistically, LTB4 drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. Conclusion. These results reveal the role of the NLRP3 inflammasome in mediating MSU crystalinduced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB4 in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Resumo:
This paper compares the responses of conventional and transgenic soybean to glyphosate application in terms of the contents of 17 detectable soluble amino acids in leaves, analyzed by HPLC and fluorescence detection. Glutamate, histidine, asparagine, arginine + alanine, glycine + threonine and isoleucine increased in conventional soybean leaves when compared to transgenic soybean leaves, whereas for other amino acids, no significant differences were recorded. Univariate analysis allowed us to make an approximate differentiation between conventional and transgenic lines, observing the changes of some variables by glyphosate application. In addition, by means of the multivariate analysis, using principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA) it was possible to identify and discriminate different groups based on the soybean genetic origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr2+) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.
Resumo:
The onset and early course of schizophrenia is associated with subtle loss of grey matter which may be responsible for the evolution and persistence of symptoms such as apathy, emotional blunting, and social withdrawal. Such 'negative' symptoms are unaffected by current antipsychotic therapies. There is evidence that the antibiotic minocycline has neuroprotective properties. We investigated whether the addition of minocycline to treatment as usual (TAU) for 1 year in early psychosis would reduce negative symptoms compared with placebo. In total, 144 participants within 5 years of first onset in Brazil and Pakistan were randomised to receive TAU plus placebo or minocycline. The primary outcome measures were the negative and positive syndrome ratings using the Positive and Negative Syndrome Scale. Some 94 patients completed the trial. The mean improvement in negative symptoms for the minocycline group was 9.2 and in the placebo group 4.7, an adjusted difference of 3.53 (s.e. 1.01) 95% CI: 1.55, 5.51; p < 0.001 in the intention-to-treat population. The effect was present in both countries. The addition of minocycline to TAU early in the course of schizophrenia predominantly improves negative symptoms. Whether this is mediated by neuroprotective, anti-inflammatory or others actions is under investigation.
Resumo:
In the central nervous system, zinc is released along with glutamate during neurotransmission and, in excess, can promote neuronal death. Experimental studies have shown that metallothioneins I/II (MT-I/II), which chelate free zinc, can affect seizures and reduce neuronal death after status epilepticus. Our aim was to evaluate the expression of MT-I/II in the hippocampus of patients with temporal lobe epilepsy (TLE). Hippocampi from patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and patients with TLE associated with tumor or dysplasia (TLE-TD) were evaluated for expression of MT-I/II, for the vesicular zinc levels, and for neuronal, astroglial, and microglial populations. Compared to control cases, MTLE group displayed widespread increase in MT-I/II expression, astrogliosis, microgliosis and reduced neuronal population. In TLE-TD, the same changes were observed, except that were mainly confined to fascia dentata. Increased vesicular zinc was observed only in the inner molecular layer of MTLE patients, when compared to control cases. Correlation and linear regression analyses indicated an association between increased MT-I/II and increased astrogliosis in TLE. MT-I/II levels did not correlate with any clinical variables, but MTLE patients with secondary generalized seizures (SGS) had less MT-I/II than MTLE patients without SGS. In conclusion, MT-I/II expression was increased in hippocampi from TLE patients and our data suggest that it is associated with astrogliosis and may be associated with different seizure spread patterns.
Resumo:
Calorie restriction (CR) enhances animal life span and prevents age-related diseases, including neurological decline. Recent evidence suggests that a mechanism involved in CR-induced life-span extension is NO-stimulated mitochondrial biogenesis. We examine here the effects of CR on brain mitochondrial content. CR increased eNOS and nNOS and the content of mitochondria] proteins (cytochrome c oxidase, citrate synthase, and mitofusin) in the brain. Furthermore, we established an in vitro system to study the neurological effects of CR using serum extracted from animals on this diet. In cultured neurons, CR serum enhanced nNOS expression and increased levels of nitrite (a NO product). CR serum also enhanced the levels of cytochrome c oxidase and increased citrate synthase activity and respiratory rates in neurons. CR serum effects were inhibited by L-NAME and mimicked by the NO donor SNAP. Furthermore, both CR sera and SNAP were capable of improving neuronal survival. Overall, our results indicate that CR increases mitochondrial biogenesis in a NO-mediated manner, resulting in enhanced reserve respiratory capacity and improved survival in neurons. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: schizophrenia's endophenotipic profile is not only generally complex, but often varies from case to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. In that context, neurophysiologic hypotheses (e. g. glutamatergic hypothesis) and connectivity hypotheses became prominent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time. Objectives: This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM) hypotheses of schizophrenia's etiology. This model proposes to serve as a framework in order to relate to patterns of brain abnormalities from the onset of the syndrome to stages of advanced chronification. Highlights: Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e. g., NRG-1). A second level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible decreases in psychosocial functioning.
Resumo:
It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.
Resumo:
NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.
Resumo:
The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. In the present study, we tested the possible involvement of magnocellular neurons of the paraventricular (PVN) and/or supraoptic (SON) of the hypothalamus that synthesize vasopressin in the cardiovascular pathway activated by the microinjection of NA into the MeA. Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl2, 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA Into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ferreira-Junior NC, Fedoce AG, Alves FHF, Correa FMA, Resstel LBM. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors. Am J Physiol Regul Integr Comp Physiol 302: R876-R885, 2012. First published December 28, 2011; doi: 10.1152/ajpregu.00330.2011.-Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.
Resumo:
Systemic injection of pilocarpine in rodents induces status epilepticus (SE) and reproduces the main characteristics of temporal lobe epilepsy (TLE). Different mechanisms are activated by SE contributing to cell death and immune system activation. We used BALB/c nude mice, a mutant that is severely immunocompromised, to characterize seizure pattern, neurochemical changes, cell death and c-Fos activation secondarily to pilocarpine-induced SE. The behavioral seizures were less severe in BALB/c nude than in BALB/c wild type mice. However, nude mice presented more tonic clonic episodes and higher mortality rate during SE. The c-Fos expression was most prominent in the caudate-putamen, CA3 (p < 0.05), dentate gyrus, entorhinal cortex (p < 0.001), basolateral nucleus of amygdala (p < 0.01) and piriform cortex (p < 0.05) of BALB/c nude mice than of BALB/c. Besides, nude mice subjected to SE presented high number of Fluorojade-B (FJB) stained cells in the piriform cortex, amygdala (p < 0.05) and hilus (p < 0.05) in comparison with BALB/c mice. A significant increase in the level of glutamate and GABA was found in the hippocampus and cortex of BALB/c mice presenting SE in comparison to controls. However, the level of glutamate was higher in the brains of BALB nude mice than in the brains of BALB/c wild type mice, while the levels of GABA were unchanged. These results indicate that the brains of immunodeficient nude mice are more vulnerable to the deleterious effects of pilocarpine-induced SE as they present intense activation, increased glutamate levels and more cell death. Published by Elsevier B.V.
Resumo:
Costa-Silva JH, Zoccal DB, Machado BH. Chronic intermittent hypoxia alters glutamatergic control of sympathetic and respiratory activities in the commissural NTS of rats. Am J Physiol Regul Integr Comp Physiol 302: R785-R793, 2012. First published December 28, 2011; doi:10.1152/ajpregu.00363.2011.-Sympathetic overactivity and altered respiratory control are commonly observed after chronic intermittent hypoxia (CIH) exposure. However, the central mechanisms underlying such neurovegetative dysfunctions remain unclear. Herein, we hypothesized that CIH (6% O-2 every 9 min, 8 h/day, 10 days) in juvenile rats alters glutamatergic transmission in the commissural nucleus tractus solitarius (cNTS), a pivotal site for integration of peripheral chemoreceptor inputs. Using an in situ working heart-brain stem preparation, we found that L-glutamate microinjections (1, 3, and 10 mM) into the cNTS of control rats (n = 8) evoked increases in thoracic sympathetic nerve (tSN) and central vagus nerve (cVN) activities combined with inhibition of phrenic nerve (PN) activity. Besides, the ionotropic glutamatergic receptor antagonism with kynurenic acid (KYN; 250 mM) in the cNTS of control group (n = 7) increased PN burst duration and frequency. In the CIH group (n = 10), the magnitude of L-glutamate-induced cVN excitation was smaller, and the PN inhibitory response was blunted (P < 0.05). In addition, KYN microinjections into the cNTS of CIH rats (n = 9) did not alter PN burst duration and produced smaller increases in its frequency compared with controls. Moreover, KYN microinjections into the cNTS attenuated the sympathoexcitatory response to peripheral chemoreflex activation in control but not in CIH rats (P < 0.05). These functional CIH-induced alterations were accompanied by a significant 10% increase of N-methyl-D-aspartate receptor 1 (NMDAR1) and glutamate receptor 2/3 (GluR2/3) receptor subunit density in the cNTS (n = 3-8, P < 0.05), evaluated by Western blot analysis. These data indicate that glutamatergic transmission is altered in the cNTS of CIH rats and may contribute to the sympathetic and respiratory changes observed in this experimental model.