35 resultados para fungal pathogens
Resumo:
5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
Resumo:
The maned wolf, Chrysocyon brachyurus, is an endangered Neotropical canid that survives at low population densities. Diseases are a potential threat for its conservation but to date have been poorly studied. We performed clinical evaluations and investigated the presence of infectious diseases through serology and coprologic tests on maned wolves from Galheiro Natural Private Reserve, Perdizes City, Minas Gerais State, southeastern Brazil. Fifteen wolves were captured between 2003 and 2008. We found high prevalences of antibody to canine distemper virus (CDV; 13/14), canine parvovirus (CPV; 4/14), canine adenovirus type 2 (13/14), canine coronavirus (5/11), canine parainfluenza virus (5/5), and Toxoplasma gondii (6/8), along with Ancylostomidae eggs in all feces samples. Antibodies against Leishmania sp. were found in one of 10 maned wolves, and all samples were negative for Neospora caniman. Evidence of high exposure to these viral agents was also observed in unvaccinated domestic clogs from neighboring farms. High prevalence of viral agents and parasites such as CDV, CPV, and Ancylostomidae indicates that this population faces considerable risk of outbreaks and chronic debilitating parasites. This is the first report of exposure to canine parainfluenza virus in Neotropical free-ranging wild canids. Our findings highlight that canine pathogens pose a serious hazard to the viability of maned wolves and other wild carnivore populations in the area and emphasize the need for monitoring and protecting wildlife health in remaining fragments of the Cerrado biome.
Resumo:
Endophytic microorganisms live inside tissues of host plants apparently do not causing warning to them, and area promising source of bioactive molecules as antimicrobial and antitumoral drugs. In this work, we report the isolation of eugenitin from cultures of the endophyte Mycoleptodiscus indicus and its potential as additive for Aspergillus niveus glucoamylase activation. The glucoamylase hydrolytic activity increased twofold using 5 mM of eugenitin and this activation could be explained by the binding mode of eugenitin with the three-dimensional structure of glucoamylase. The in silica prediction of ligand binding sites revealed at least 9 possible interaction sites able to accommodate eugenitin on glucoamylase from Hypocrea jecorina. Besides, we evaluated the effect of pH and temperature on activity and stability, as well as in the hydrolysis of different substrates and kinetic parameters either in presence or absence of eugenitin. The results displayed by eugenitin as additive to glucoamylase activation are promising and provide novel perspectives for applications of fungal metabolites. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We thank the Clinical Directors from the Hospital das Clínicas da Faculdade de Medicina da USP for their support: Prof. Jose Otávio Costa Auler Junior, Prof. Tarcísio Eloi Pessoa de Barros Filho and Prof. Eloísa Bonfá
Resumo:
We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ?aoxA, ?cycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation.
Resumo:
CD40 ligand (CD40L) deficiency or X-linked hyper-IgM syndrome (X-HIGM) is a well-described primary immunodeficiency in which Pneumocystis jiroveci pneumonia is a common clinical feature. We have identified an unusual high incidence of fungal infections and other not yet described infections in a cohort of 11 X-HIGM patients from nine unrelated Brazilian families. Among these, we describe the first case of paracoccidioidomycosis (PCM) in X-HIGM. The molecular genetic analysis of CD40L was performed by gene sequencing and evaluation of CD40L protein expression. Nine of these 11 patients (82%) had fungal infections. These included fungal species common to CD40L deficiency (P. jiroveci and Candida albicans) as well as Paracoccidioides brasiliensis. One patient presented with PCM at age 11 years and is now doing well at 18 years of age. Additionally, one patient presented with a simultaneous infection with Klebsiella and Acinetobacter, and one with condyloma caused by human papilloma virus. Molecular analysis revealed four previously described CD40L mutations, two novel missense mutations (c.433 T>G and c.476 G>C) resulting in the absence of CD40L protein expression by activated CD4(+) cells and one novel insertion (c.484_485insAA) within the TNFH domain leading to a frame shift and premature stop codon. These observations demonstrated that the susceptibility to fungal infections in X-HIGM extends beyond those typically associated with X-HIGM (P. jiroveci and C. albicans) and that these patients need to be monitored for those pathogens.
Resumo:
Eugenitin, a chromone derivative and a metabolite of the endophyte Mycoleptodiscus indicus, at 5 mM activated a recombinant GH11 endo-xylanase by 40 %. The in silico prediction of ligand-binding sites on the three-dimensional structure of the endo-xylanase revealed that eugenitin interacts mainly by a hydrogen bond with a serine residue and a stacking interaction of the heterocyclic aromatic ring system with a tryptophan residue. Eugenitin improved the GH11 endo-xylanase activity on different substrates, modified the optimal pH and temperature activities and slightly affected the kinetic parameters of the enzyme.
Resumo:
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.
Resumo:
Background data: The presence of Streptococcus mutans and Lactobacillus acidophilus in dental structure is an indicator of a cariogenic biofilm. Photodynamic therapy is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals capable of inducing cell death. Reduction of bacteria levels can provide additional means of preventing dental caries. Objective: The present study evaluated the susceptibility of planktonic cultures of S. mutans (ATCC 25175) and L. acidophilus (ATCC-IAL-523) from the Adolfo Lutz Institute (IAL) to photodynamic therapy after sensitization with curcumin and exposure to blue light at 450 nm. Methods: Bacterial suspensions of S. mutans and L. acidophilus isolated (as single species) and combined (multspecies) were prepared and then evaluated. Four different groups were analyzed: L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (photodynamic therapy group). Two different concentrations of curcumin were tested (0.75 and 1.5 g/L) associated with a 5.7 J/cm(2) light emission diode. Results: Significant decreases (p < 0.05) in the viability of S. mutans were only observed when the bacterial suspensions were exposed to both curcumin and light. Then, reductions in viability of up to 99.99% were observed when using 1.5 g/L of the photosensitizer. The susceptibility of L. acidophilus was considerably lower (21% and 37.6%) for both curcumin concentrations. Conclusions: Photodynamic therapy was found to be effective in reducing S. mutans and L. acidophilus on planktonic cultures. No significant reduction was found for L-D+, proving the absence of dark toxicity of the drug.
Resumo:
Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and beta-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 A degrees C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of beta-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of beta-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of beta-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of beta-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.
Resumo:
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Resumo:
Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
The biofilms formed by opportunistic yeasts serve as a persistent reservoir of infection and impair the treatment of fungal diseases. The aim of this study was to evaluate photodynamic inactivation (PDI) of biofilms formed by Candida spp. and the emerging pathogens Trichosporon mucoides and Kodamaea ohmeri by a cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine (ZnPc). Biofilms formed by yeasts after 48 h in the bottom of 96-well microtiter plates were treated with the photosensitizer (ZnPc) and a GaAlAs laser (26.3 J cm(-2)). The biofilm cells were scraped off the well wall, homogenized, and seeded onto Sabouraud dextrose agar plates that were then incubated at 37A degrees C for 48 h. Efficient PDI of biofilms was verified by counting colony-forming units (CFU/ml), and the data were submitted to analysis of variance and the Tukey test (p < 0.05). All biofilms studied were susceptible to PDI with statistically significant differences. The strains of Candida genus were more resistant to PDI than emerging pathogens T. mucoides and K. ohmeri. A mean reduction of 0.45 log was achieved for Candida spp. biofilms, and a reduction of 0.85 and 0.84, were achieved for biofilms formed by T. mucoides and K. ohmeri, respectively. Therefore, PDI by treatment with nanostructured formulations cationic zinc 2,9,16,23- tetrakis (phenylthio)- 29H, 31H- phthalocyanine (ZnPc) and a laser reduced the number of cells in the biofilms formed by strains of C. albicans and non-Candida albicans as well the emerging pathogens T. mucoides and K. ohmeri.
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Aspergillus fumigatus is a primary and opportunistic pathogen, as well as a major allergen, of mammals. The Ca+2-calcineurin pathway affects virulence, morphogenesis and antifungal drug action in A. fumigatus. Here, we investigated three components of the A. fumigatus Ca+2-calcineurin pathway, pmcA,-B, and -C, which encode calcium transporters. We demonstrated that CrzA can directly control the mRNA accumulation of the pmcA-C genes by binding to their promoter regions. CrzA-binding experiments suggested that the 5'-CACAGCCAC-3' and 5'-CCCTGCCCC-3' sequences upstream of pmcA and pmcC genes, respectively, are possible calcineurin-dependent response elements (CDREs)-like consensus motifs. Null mutants were constructed for pmcA and -beta and a conditional mutant for pmcC demonstrating pmcC is an essential gene. The Delta pmcA and Delta pmcB mutants were more sensitive to calcium and resistant to manganese and cyclosporin was able to modulate the sensitivity or resistance of these mutants to these salts, supporting the interaction between calcineurin and the function of these transporters. The pmcA-C genes have decreased mRNA abundance into the alveoli in the Delta calA and Delta crzA mutant strains. However, only the A. fumigatus Delta pmcA was avirulent in the murine model of invasive pulmonary aspergillosis.