24 resultados para Power-Law Distributions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the local power of the likelihood ratio, Wald, score and gradient tests under the presence of a scalar parameter, phi say, that is orthogonal to the remaining parameters. We show that some of the coefficients that define the local powers remain unchanged regardless of whether phi is known or needs to be estimated, where as the others can be written as the sum of two terms, the first of which being the corresponding term obtained as if phi were known, and the second, an additional term yielded by the fact that phi is unknown. The contribution of each set of parameters on the local powers of the tests can then be examined. Various implications of our main result are stated and discussed. Several examples are presented for illustrative purposes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we introduce a three-parameter extension of the bivariate exponential-geometric (BEG) law (Kozubowski and Panorska, 2005) [4]. We refer to this new distribution as the bivariate gamma-geometric (BGG) law. A bivariate random vector (X, N) follows the BGG law if N has geometric distribution and X may be represented (in law) as a sum of N independent and identically distributed gamma variables, where these variables are independent of N. Statistical properties such as moment generation and characteristic functions, moments and a variance-covariance matrix are provided. The marginal and conditional laws are also studied. We show that BBG distribution is infinitely divisible, just as the BEG model is. Further, we provide alternative representations for the BGG distribution and show that it enjoys a geometric stability property. Maximum likelihood estimation and inference are discussed and a reparametrization is proposed in order to obtain orthogonality of the parameters. We present an application to a real data set where our model provides a better fit than the BEG model. Our bivariate distribution induces a bivariate Levy process with correlated gamma and negative binomial processes, which extends the bivariate Levy motion proposed by Kozubowski et al. (2008) [6]. The marginals of our Levy motion are a mixture of gamma and negative binomial processes and we named it BMixGNB motion. Basic properties such as stochastic self-similarity and the covariance matrix of the process are presented. The bivariate distribution at fixed time of our BMixGNB process is also studied and some results are derived, including a discussion about maximum likelihood estimation and inference. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present for the first time a justification on the basis of central limit theorems for the family of life distributions generated from scale-mixture of normals. This family was proposed by Balakrishnan et al. (2009) and can be used to accommodate unexpected observations for the usual Birnbaum-Saunders distribution generated from the normal one. The class of scale-mixture of normals includes normal, slash, Student-t, logistic, double-exponential, exponential power and many other distributions. We present a model for the crack extensions where the limiting distribution of total crack extensions is in the class of scale-mixture of normals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n(-1/2), n being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive asymptotic expansions for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of dispersion models, under a sequence of Pitman alternatives. The asymptotic distributions of these statistics are obtained for testing a subset of regression parameters and for testing the precision parameter. Based on these nonnull asymptotic expansions, the power of all four tests, which are equivalent to first order, are compared. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2012 Elsevier B.V. All rights reserved.