30 resultados para Fat diet


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several biological and clinical studies have suggested that conjugated linoleic acid (CLA) prevents body fat accumulation and increases lean body mass. CLA is available as a concentrated dietary supplement and is purported to provide the aforementioned benefits for people who perform physical activity. This study was conducted to evaluate the effect of a CLA-supplemented diet combined with physical activity on the body composition of Wistar rats. Two groups of Wistar rats of both sexes, between 45 and 60 days old, were fed a diet containing 5.5% soybean oil (control group) or a CLA-supplemented diet (0.5% CLA and 5.0% soybean oil) (test group). Half the rats in both groups were assigned to exercise by running on a treadmill. The biochemical and anatomical body compositions were analyzed. In both groups, CLA had no effect on the dietary consumption or the weight of the liver, heart, and lungs. However, it did influence the overall weight gain of exercised male rats and the chemical and anatomical body composition in exercised and sedentary rats of both sexes. The results confirm that a CLA-supplemented diet with and without physical activity reduced body fat accumulation in rats of both sexes. However, there is no evidence of an increase in the lean body mass of the exercised rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of lipid and selenium sources in diets for finishing Nellore steers on the fatty acid composition and selenium concentration of the longissimus muscle. Fifty Nellore steers (body weight = 458 +/- 39 kg) were assigned to one of six dietary treatments: 1) diet containing sunflower seed and inorganic selenium; 2) sunflower seed and organic selenium; 3) whole cottonseed and inorganic selenium; 4) whole cottonseed and organic selenium; 5) soybeans and inorganic selenium; and 6) soybeans and organic selenium. Diets were formulated with the same amount of nitrogen and calories and supplied once daily to steers in collective pens, with three animals per pen, for 120 d. At the end of the trial, steers were slaughtered and samples of the longissimus muscle were collected for fatty acid and selenium analysis. Effect of selenium sources was detected for selenium concentration in the longissimus muscle. Organic selenium had higher concentrations in the meat compared with inorganic selenium. The total saturated, monounsaturated and polyunsaturated fatty acids did not differ between the sources of lipids and selenium. For selenium sources, no differences were observed between the concentrations of polyunsaturated fat. Also, no differences in C18:2 cis-9 trans-11 concentrations were noted; however, steers fed sunflower seed presented greater proportions of this fatty acid in the meat. The results indicated that the use of sunflower seed, cottonseed or soybeans and organic or inorganic selenium in feedlot diets to Nellore cattle does not alter the great part of the fatty acid profile of the longissimus muscle. However, the inclusion of sunflower seed in the diet increases the meat CLA cis-9, trans-11, which is desirable and beneficial for the health of consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (similar to 2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain amino acids, such as leucine (Leu) are not only substrates for protein synthesis but also are important regulators of protein metabolism. Moreover, it is known that alterations in intrauterine growth favor the development of chronic diseases in adulthood. Therefore, we investigated the role of Leu in combination with other BCAA on effects that are induced by maternal protein restriction on fetal growth. Wistar rats were divided into 4 groups according to the diet provided during pregnancy: control (C; 20% casein); V+I [5% casein + 2% L-valine (Val) + 2% L-isoleucine (Ile)1; KYT 15% casein + 1.8% L-lysine (Lys) + 1.2% L-tyrosine (Tyr) + 1% L-threonine (Thr)1; and BCAA (5% casein + 1.8% L-Leu + 1.2% L-Val + 1% L-Ile). Maternal protein restriction reduced the growth and organ weight of the offspring of dams receiving the V+I and KYT diets compared with the C group. Supplementation with BCAA reversed this growth deficit, minimizing the difference or restoring the mass of organs and carcass fat, the liver and muscle protein, and the RNA concentrations compared with newborns in the C group (P < 0.05). These effects could be explained by the activation of the mTOR signaling pathway, because phosphorylation of 4E-BP1 in the liver of offspring of the BCAA group was greater than that in the C, V+I, and KYT groups. The present results identify a critical role for Leu in association with other BCAA in the activation of the mTOR signaling pathway for the control of altered intrauterine growth induced by a maternal low-protein diet. J. Nutr. 142: 924-930, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. Methods Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. Results Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. Conclusion Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Several parameters are associated with high bone mineral density (BMD), such as overweight, black background, intense physical activity (PA), greater calcium intake and some medications. The objectives are to evaluate the prevalence and the main aspects associated with high BMD in healthy women. Methods: After reviewing the database of approximately 21,500 BMD scans performed in the metropolitan area of Sao Paulo, Brazil, from June 2005 to October 2010, high BMD (over 1400 g/cm(2) at lumbar spine and/or above 1200 g/cm2 at femoral neck) was found in 421 exams. Exclusion criteria were age below 30 or above 60 years, black ethnicity, pregnant or obese women, disease and/or medications known to interfere with bone metabolism. A total of 40 women with high BMD were included and matched with 40 healthy women with normal BMD, paired to weight, age, skin color and menopausal status. Medical history, food intake and PA were assessed through validated questionnaires. Body composition was evaluated through a GE-Lunar DPX MD + bone densitometer. Radiography of the thoracic and lumbar spine was carried out to exclude degenerative alterations or fractures. Biochemical parameters included both lipid and hormonal profiles, along with mineral and bone metabolism. Statistical analysis included parametric and nonparametric tests and linear regression models. P < 0.05 was considered significant. Results: The mean age was 50.9 (8.3) years. There was no significant difference between groups in relation to PA, smoking, intake of calcium and vitamin D, as well as laboratory tests, except serum C-telopeptide of type I collagen (s-CTX), which was lower in the high BMD group (p = 0.04). In the final model of multivariate regression, a lower fat intake and body fatness as well a better profile of LDL-cholesterol predicted almost 35% of high BMD in women. (adjusted R2 = 0.347; p < 0.001). In addition, greater amounts of lean mass and higher IGF-1 serum concentrations played a protective role, regardless age and weight. Conclusion: Our results demonstrate the potential deleterious effect of lipid metabolism-related components, including fat intake and body fatness and worse lipid profile, on bone mass and metabolism in healthy women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Methods: Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Results: Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. Conclusion: The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent systematic reviews concluded that the frequent consumption of fruits and vegetables is inversely associated with the risk of oral cancer. We assessed this association, specifically comparing results obtained to nonsmokers and smokers, as well to nondrinkers and drinkers. We conducted a case-control study involving 296 patients with oral squamous cell carcinoma (cases) attended in 3 major hospitals of Sao Paulo, Brazil, paired with 296 controls, recruited from outpatient units of the same hospitals. Multivariate models assessed the effect of fruits and salads according to smoking and drinking. The intake of fruit was associated with the prevention of the disease in the specific assessment among light [odds ratio (OR) = 0.46; 95% confidence interval (CI) = 0.27-0.78) and heavy (OR = 0.30; 95% CI = 0.14-0.65) smokers. The same was observed for vegetables consumption. For nonsmokers, no fruit (OR = 50; 95% CI = 0.22-1.12) or vegetable (for tomato, OR = 0.53; 95% CI = 0.31-0.93) was associated with reduced risk of oral and oropharyngeal cancer. Similar results were found in the stratified analysis according to drinking status with OR = 0.51 (95% CI = 0.30-0.87) and 0.18 for fruits (95% CI = 0.07-0.45), respectively, for light and heavy drinkers. This observation suggests that the protective effect of fruit and salad intake may modulate the deleterious effects from tobacco and alcohol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two hundred eighty-eight 32-wk-old Hisex White laying hens were used in this research during a 10 weeks period, arranged in a 2 x 5 completely randomized factorial design, with three replicates of eight birds per treatment. Two groups: fish oil (OP) and Marine Algae (AM) with five DHA levels (120, 180, 240, 300 and 360 mg/100 g diet) were assigned including two control groups birds fed corn and soybean basal diet (CON) and a diet supplemented with AM (AM420) to study the effect of time 0, 2, 4, 6 and 8 weeks (wk) on the efficiency of egg yolk fatty acid enrichment. The means varied (p<0.01) of 17.63% (OP360) to 22.08% (AM420) is the total Polyunsaturated Fatty Acids (PUFAs) and 45.8 mg/g (OP360), 40.37 mg/g (OP360, 4 wk) to 65.82 mg/g (AM420) and 68.79 mg/g/yolk (AM120, 8 wk) for n-6 PUFAs. On the influence of sources and levels in the times, the means of n-3 PUFAs increased by 5.58 mg/g (AM120, 2 wk) to 14.16 mg/g (OP360, 6 wk) when compared to average of 3.34 mg PUFAs Ω/g/yolk (CON). Usually, the means DHA also increased from 22.34 (CON) to 176.53 mg (μ, OP360), 187.91 mg (OP360, 8 wk) and 192.96 mg (OP360, 6 wk) and 134.18 mg (μ, OP360), 135.79 mg (AM420, 6 wk), 149.75 mg DHA (AM420, 8 wk) per yolk. The opposite was observed for the means AA, so the effect of the sources, levels and times, decreased (P <0.01) of 99.83 mg (CON) to 31.99 mg (OP360, 4 wk), 40.43 mg (μ, OP360) to 61.21 mg (AM420) and 71.51 mg AA / yolk (μ, AM420). Variations of the average weight of 15.75g (OP360) to 17.08g (AM420) yolks of eggs de 32.55% (AM420) to 34.08% (OP360) of total lipids and 5.28 g (AM240) to 5.84 g (AM120) of fat in the yolk were not affected (p>0.05) by treatments, sources, levels and times studied. Starting of 2 week, the hens increased the level of n-3 PUFAs in the egg yolks, being expressively increased (p<0.01) until 4 weeks, which after the increased levels of n-3 PUFAs tended to if stabilize around of time of 8 experimental weeks, when it was more effective saturation of the tissues and yolk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases