24 resultados para Ethyl biodiesel
Resumo:
Ethyl carbamate is an impurity present in distilled beverages. Given the risk of it being a carcinogenic substance, Brazilian legislation has determined that its presence in distilled beverages, such as 'aguardente' and 'cachaca' (two types of sugarcane spirits), should be limited to a maximum of 150 mu g/L. Ordinary spirits usually contain variable amounts of ethyl carbamate, although in lower concentrations than the maximum determined by law. The finding that commercial spirits had a much lower concentration of this impurity (around 50 mu g/L) led the authors to research the reasons for the differences, and these are explored in this paper, with a focus on the speed of the distillation process and its influence on the spirit's composition. The team conducted research in a sugarcane distillery producing 'aguardente' using a simple pot still and measured the influence of fast and slow distillation on the presence of ethyl carbamate and non-alcohol components in the process. The results demonstrated that the speed of distillation was proportionally related to the concentration of ethyl carbamate and secondary components in the beverage's composition. Copyright (c) 2012 The Institute of Brewing & Distilling
Resumo:
The treatment of cerium metal with ethyl bromosuccinate (1) forms the stabilized organolanthanoid intermediate (2), which reacts with carbonyl compounds in a Reformatsky-type reaction, under mild conditions, to produce functionalized gamma-substituted paraconic acids (4) in good yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to verify the effect of a double distillation on the reduction of the ethyl carbamate content in sugar cane spirit. Ethyl carbamate is a potentially carcinogenic compound normally present at critical levels in sugar cane spirit, constituting a public health problem and therefore hindering the export of this beverage. The ethanol, copper and ethyl carbamate contents were evaluated, using gas chromatography/mass spectroscopy, during a double distillation of the fermented sugar cane juice. The distillate fraction from the first distillation accumulated 30% of the ethyl carbamate formed. In the second distillation, the ethyl carbamate and the copper content increased during the process as the alcohol content decreased, and only 3% of the ethyl carbamate formed was collected in the spirit. Double distillation decreased the ethyl carbamate content in the sugar cane spirit by 97%. (C) Copyright 2012 The Institute of Brewing & Distilling
Resumo:
Strontium zirconate oxide was synthesized by co-precipitation and the citrate route and was evaluated as a heterogeneous catalyst for biodiesel production. The catalyst samples were characterized by XRD, FTIR, and TG, and catalytic activity was measured based on the ester content of the biodiesel produced that was quantified by GC. The co-precipitate samples were obtained in alkaline pH and had a mixture of the perovskite and pure strontium and zirconium oxide phases. Ester conversion using these samples was approximately 1.6%, indicating no catalytic activity. The citrate route was more efficient in producing perovskite when carried out at pH 7-8; excess SrCO3 was found on the catalyst surface due to CO2 adsorption, thus demonstrating no catalytic activity. The same synthesis carried out at pH 2 resulted in free OH- groups, with a small amount of the carbonate species that produced ester yield values of 98%. Therefore, matrices based on strontium zirconate produced via the citrate route in acidic media are potential heterogeneous catalysts for transesterification. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L-1 h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L-1 resulted in high biomass production. The highest biomass concentration (21 g L-1), yield (0.45 g g(-1)) and productivity (0.31 g L-1 h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
Resumo:
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Microalgae are a promising source of raw material for biodiesel production. This review discusses the latest developments related to the application of microalgae biomass for biodiesel production. Characterization of fatty acid of microalgae and comparisons with other sources of raw materials and processes are presented. Furthermore, technological perspectives and approaches for growing microalgae in photobioreactors, microalgal oil extraction techniques, and procedures for synthesizing biodiesel are reviewed.
Resumo:
Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.
Resumo:
The performance, carcass traits, and litter humidity of broilers fed increasing levels of glycerine derived from biodiesel production were evaluated. In this experiment, 1,575 broilers were distributed according to a completely randomized experimental design into five treatments with seven replicates of 45 birds each. Treatments consisted of a control diet and four diets containing 2.5, 5.0, 7.5, or 10% glycerine. The experimental diets contained equal nutritional levels and were based on corn, soybean meal and soybean oil. The glycerine included in the diets contained 83.4% glycerol, 1.18% sodium, and 208 ppm methanol, and a calculated energy value of 3,422 kcal AMEn/kg. Performance parameters (weight gain, feed intake, feed conversion ratio, live weight, and livability) were monitored when broilers were 7, 21, and 42 days of age. On day 43, litter humidity was determined in each pen, and 14 birds/treatment were sacrificed for the evaluation of carcass traits. During the period of 1 to 7 days, there was a positive linear effect of the treatments on weight gain, feed intake, and live weight gain. Livability linearly decreased during the period of 1 to 21 days. During the entire experimental period, no significant effects were observed on performance parameters or carcass traits, but there was a linear increase in litter humidity. Therefore, the inclusion of up to 5% glycerine in the diet did not affect broiler performance during the total rearing period.