34 resultados para Copper depletion
Resumo:
CHEMICAL AND PHYSICAL FACTORS INFLUENCING LEAD AND COPPER CONTAMINATION IN DRINKING WATER: APPROACH FOR A CASE STUDY IN ANALYTICAL CHEMISTRY. Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirao Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The method is based on an extension of classical dq transformation that makes it possible to write a vectorial model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the application of that transformation in the classical machine per-phase model. That transformation can be applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine, considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs a classical six-step mode as a converter. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Morphologic changes on copper surfaces upon applying an established potential protocol were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed a good correlation between the time employed in the electrode activation and the resulting microstructure and electrochemical activity.
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
Background: Urinary copper excretion higher than 100 mu g/24 h is useful for diagnosing Wilson's disease. D-Penicillamine challenge test may produce higher levels than 1400 mu g/24 h, allowing for better diagnostic accuracy. This study investigated whether heterozygotes reach this value and compared copper serum levels, ceruloplasmin, and urinary copper excretion before and after administering D-penicillamine to the parents of Wilson's disease patients. Methods: Fifty parents of adult patients were enrolled to obtain copper serum levels and ceruloplasmin along with 24-h urinary copper excretion before and after administering 1 g D-penicillamine. Results: Serum ceruloplasmin and copper levels were significantly lower in fathers than in mothers (mean 21.8 x 27.8 mg%; 71.4 x 88.0 mu g%; p <= 0.001). The mean of basal 24-h urinary copper excretion was higher in fathers (26.2 x 18.7 mu g/24 h, p = 0.01), but did not differ between the genders after D-penicillamine (521.7 x 525.3, range 31.6-1085.1 mu g/24 h, p = 0.8). Conclusions: The mean values of serum copper, ceruloplasmin, and basal urinary copper excretion were different between males and females. The current diagnostic threshold of 24-h urinary copper excretion after D-penicillamine was not reached by heterozygotes. The increased urinary copper excretion after D-penicillamine challenge was much higher than fivefold the upper limit of normal urinary copper excretion in the majority of heterozygotes and should not be taken into account when diagnosing Wilson's disease. (C) 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the potentially detrimental effects of copper and elevated aquatic CO2 (hypercarbia), alone or in combination, on pacu, Piaractus mesopotamicus. Fish were exposed for 48 h to control (no copper addition in normocarbia), to 400 mu g Cu2+L-1, to hypercarbic (1% CO2; PCO2=6.9 mm Hg) water and to 400 mu g Cu2+L-1+ hypercarbia. In liver the single factors caused an increase in lipid hydroperoxide concentration that was not observed when the factors were combined. Copper exposure elicited increased hepatic superoxide dismutase activity, irrespective of aquatic CO2 level. On the other hand, the effects of copper on hepatic glutathione peroxidase activity were dependent on water CO2 levels. The two stressors combined did not affect hepatic catalase activity. Hypercarbic water caused a decline in plasma glucose concentration, but this was not observed when hypercarbia was combined with copper exposure. Copper caused a decrease in branchial Na+/K+-ATPase activity that was independent of water CO2 level. Copper caused an increase in branchial metallothionein concentration that was independent of water CO2 level. Thus, branchial metallothionein and Na+/K+-ATPase were effective biomarkers of copper exposure that were not affected by water CO2 level. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Defining pharmacokinetic parameters and depletion intervals for antimicrobials used in fish represents important guidelines for future regulation by Brazilian agencies of the use of these substances in fish farming. This article presents a depletion study for oxytetracycline (OTC) in tilapias (Orechromis niloticus) farmed under tropical conditions during the winter season. High performance liquid chromatography, with fluorescence detection for the quantitation of OTC in tilapia fillets and medicated feed, was developed and validated. The depletion study with fish was carried out under monitored environmental conditions. OTC was administered in the feed for five consecutive days at daily dosages of 80 mg/kg body weight. Groups of ten fish were slaughtered at 1, 2, 3, 4, 5, 8, 10, 15, 20, and 25 days after medication. After the 8th day posttreatment, OTC concentrations in the tilapia fillets were below the limit of quantitation (13 ng/g) of the method. Linear regression of the mathematical model of data analysis presented a coefficient of 0.9962. The elimination half- life for OTC in tilapia fillet and the withdrawal period were 1.65 and 6 days, respectively, considering a percentile of 99% with 95% of confidence and a maximum residue limit of 100 ng/g. Even though the study was carried out in the winter under practical conditions where water temperature varied, the results obtained are similar to others from studies conducted under controlled temperature.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn), copper (Cu) and selenium (Se) on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9) or inorganic (n = 10) sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS) was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.
Resumo:
Copper complexes with fluorinated beta-diketones were synthesized and characterized in terms of lipophilicity and peroxide-assisted oxidation of dihydrorhodamine as an indicator of redox activity. The biological activity of the complexes was tested against promastigotes of Leishmania amazonensis. Inhibition of trypanosomatid-specific trypanothione reductase was also tested. It was found that the highly lipophilic and redox-active bis(trifluoroacetylacetonate) derivative had increased toxicity towards promastigotes. These results indicate that it is possible to modulate the activity of metallodrugs based on redox-active metals through the appropriate choice of lipophilic chelators in order to design new antileishmanials. Further work will be necessary to improve selectivity of these compounds against the parasite.
Resumo:
Two novel dinuclear complexes involving the antihypertensive drug valsartan and copper(II) ion have been prepared in water and DMSO. The complex compositions were determined as: [Cu(vals)(H(2)O)(3)](2)center dot 6H(2)O and [Cu(vals)(H(2)O)(2)DMSO](2)center dot 2H(2)O. They were thoroughly characterized by elemental and thermal analysis, spectrophotometric titrations and UV-visible, diffuse reflectance, FTIR, Raman and EPR spectroscopies. No effect of the ligand on two tested osteoblastic cell lines in culture (one normal MOT3E1 and one tumoral UMR106) was observed in concentrations up to 100 mu M. Higher concentrations of Valsartan are required to induce cytotoxicity in both cell lines. The antiproliferative effect of the tested complex ([Cu(vals) (H(2)O)(3)](2)center dot 6H(2)O) in a dose-response manner, was higher in the UMR106 osteoblastic cell line than that of the MC3T3E1 normal line at concentrations >= 100 mu M. Morphological alterations are in accordance with proliferative observations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to evaluate the blood gas profile of experimentally copper-poisoned sheep (in the pre-hemolytic, hemolytic and post-hemolytic phases) that have been treated or not treated with ammonium tetrathiomolybdate. Ten lambs of the Santa Ines breed were divided into two groups: control and ATTM (treated (ammonium tetrathiomolibydate). The animals were submitted to increasing doses of copper sulfate until macroscopic hemoglobinuria was detected. All of the control animals from died within four days of hemolytic crisis, and one sheep from ATTM died during the treatment. There was no difference in blood gas parameters between experimental groups. Higher values of pCO(2) were observed during the hemolytic crisis (HC) in both groups. The control group had higher mean values of hCO(3) in the times HC and 2 days after hemolytic crisis (dA) when compared with the time 15 before hemolytic crises (dB). The sheep that were treated with ATTM presented lower values of hCO(3) at 7dB and higher levels at the HC. The control and ATTM groups exhibited higher values of BE during the HC. Poisoning resulted in disorder in the acid-base equilibrium, characterized by metabolic alkalosis and respiratory acidosis. Treatment with ATTM was able to reverse the changes in acid-base balance in copper poisoning sheep.
Resumo:
The patination of copper is known for its complexity and heterogeneous formation. For a deeper investigation, a locally resolved surface analysis was considered. An exact determination of the accessed area and a potentiostatic control in a three-electrode configuration was reached with the use of the electrochemical microcell technique, which enables local electrochemical measurement such as local electrochemical impedance spectroscopy and cyclic voltammetry. Such a technique provides a unique way for performing the investigation of heterogeneities on electrode surfaces. The local electrochemical measurements on the artificially patinated surface have allowed distinguishing areas of different reactivity even when the analysis of the surface revealed a homogenous chemical composition of patina. Local measurements with the electrochemical microcell showed the presence of small defects on the patina layer that can be modelled by considering a hemispherical diffusion process at small active areas surrounded by larger less reactive domains.
Resumo:
This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The electronic interactions between the [Cu(opba)]2- anions (where opba is orthophenylenebis (oxamato)) and single-wall carbon nanotubes (SWCNTs) were investigated by resonance Raman spectroscopy. The opba can form molecular magnets, and the interactions of opba with SWCNTs can produce materials with very different magnetic/electronic properties. It is observed that the electronic interaction shows a dependence on the SWCNT diameter independent of whether they are metallic or semiconducting, although the interaction is stronger for metallic tubes. The interaction also is dependent on the amount of complex that is probably adsorbed on the carbon surface of the SWCNTs. Some charge transfer can be also occurring between the metallic complex and the SWCNTs. Copyright (c) 2012 John Wiley & Sons, Ltd.