27 resultados para C-~(13)-NMR
Resumo:
This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, beta relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The beta relaxation has been assigned to a transition at about 210 K measured by H-1 and C-13 solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and H-1 NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.
Resumo:
The C-13(O-18,O-16)C-15 reaction has been studied at 84 MeV incident energy. The ejectiles have been detected at forward angles and C-15 excitation energy spectra have been obtained up to about 20 MeV. Several known bound and resonant states of C-15 have been identified together with two unknown structures at 10.5 MeV (FWHM = 2.5 MeV) and 13.6 MeV (FWHM = 2.5 MeV). Calculations based Oil the removal of two uncorrelated neutrons from the projectile describe a significant part of the continuum observed in the energy spectra. In particular the structure at 10.5 MeV is dominated by a resonance of C-15 near the C-13 + n + n threshold. Similar structures are found in nearby nuclei such as C-14 and Be-11. (c) 2012 Elsevier BM. All rights reserved.
Resumo:
The rediscovery of the enigmatic subterranean characiform Stygichthys typhlops is reported almost a half-century after the collection of the holotype, the only specimen previously known. Thirty-four specimens were collected in two shallow hand-dug wells at the region of the type locality, c. 13 km south-west of the town of Jaiba, Minas Gerais, Brazil. These specimens provide new information on the morphology of this species, and for the first time on its life history. The conservation status of S. typhlops is discussed. The species is severely threatened by habitat loss caused by exploitation of the aquifer. (C) 2010 The Authors Journal compilation (C) 2010 The Fisheries Society of the British Isles
Resumo:
This paper provides a paleoenvironmental reconstruction of a Late Quaternary lagoon system in the Jaguaruna region of Santa Catarina state, southern Brazil. Integrated results of bulk sedimentary organic matter characterization (delta C-13, delta N-15 and C/N), microfossil (pollen and diatom) and grain-size analysis from three shallow cores (similar to 2.5m depth) allowed us to propose an evolving paleogeographic scenario in this coastal region for the last ca. 5500 cal a BP. The lagoonal system in this area was more extensive during the mid-Holocene than today, with a gradual and continuous lagoon-sea disconnection until the present. We add to the debate regarding relative sea-level (RSL) variations for the Brazilian coast during the Holocene and discuss the importance of sedimentary dynamics for interpreting changes in coastal ecosystems. The multi-proxy analysis suggests that changes in coastal ecosystems could be directly related to local sedimentary processes, which are not necessarily linked to RSL fluctuations and/or to climatic variations. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Background: Patients with Crohn's disease (CD) have been shown to present dyspeptic symptoms more frequently than the general population. Some of these symptoms could be related to motility disorders to some degree. Then, we propose to investigate whether gastric emptying of solids in patients with inactive CD is delayed and to determine the relationships between gastric emptying and dyspeptic symptoms in inactive CD. Methods: Twenty-six patients with inactive Crohn's disease, as defined by a Crohn's Disease Activity Index (CDAI) < 150, underwent a gastric emptying test by breath test using C-13 octanoic acid coupled to a solid meal and answered a validated questionnaire (The Porto Alegre Dyspeptic Symptoms Questionnaire) to assess dyspeptic symptoms. Patients with scores >= 6 were considered to have dyspepsia. The control group was composed by 19 age-and sex-matched healthy volunteers. Results: Patients with CD had a significantly longer t 1/2 and t lag (p<0.05) than the controls. CD patients with dyspepsia had significantly (p<0.05) prolonged gastric emptying when compared to patients without dyspeptic symptoms. When the individual symptom patterns were analyzed, only vomiting was significantly associated with delayed gastric emptying (p<0.05). There was no difference between the subgroups of patients with respect to gender, CDAI scores, disease location, clinical behavior (obstructive/obstructive) or previous gastrointestinal surgery. Conclusion: Delayed gastric emptying in inactive Crohn's disease patients seems to be associated with dyspeptic symptoms, particularly vomiting, even without any evidence of gastrointestinal obstruction.
Resumo:
If riparian buffer zones are ineffective in preventing C-4 plant carbon from upland areas reaching the stream sediment, the composition of stream fauna can be significantly altered. The permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil was measured in nine watersheds categorised according to the predominant land cover of the legally required 30-m buffer riparian zone. Four watersheds with well preserved riparian forest along the 30-m buffer zone were designated as FOREST watersheds; three watersheds, with a predominance of C-4 grasses from sugarcane to pasture, mixed with preserved riparian forests, were designated MIXED watersheds; and two watersheds were termed PASTURE-SUGAR because their entire 30-m buffer zone was covered by C-4 plants. Stable carbon (delta C-13) isotopes were used as tracers of upland C-4 carbon in sediments, suspended particulate organic carbon, terrestrial and aquatic invertebrates and two species of neotropical fish. Although the intact 30-m buffer zone of riparian forests did not entirely prevent the input of C-4 to the river environment and food web, there was a significant increase in C-4 carbon in those watersheds where the buffer zone was not covered by riparian forests. These findings emphasise the importance of riparian forests in mitigating disturbance in streams and support efforts to preserve such riparian corridors.
Resumo:
We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling.
Resumo:
The Yellow-spotted River Turtle (Podocnemis unifilis Troschel, 1848) and the South American River Turtle (Podocnemis expansa (Schweigger, 1812)) are two turtles species that are widely distributed and have ecological, economic, and cultural importance in the Amazon basin. Although sympatric regarding most of their distribution, few studies have addressed the coexistence of these two species. To examine this, we analyzed the trophic level and the primary carbon source from the diets of both species in Baixo Araguaia, Tocantins, Brazil, using stable isotope analyses of carbon (delta C-13) and nitrogen (delta N-15). We also verified possible intraspecific variations (related to sex and body mass) in the trophic levels and primary carbon sources of their diets. Podocnemis unifilis had higher values of delta N-15 than P. expansa, averaging 7.59 parts per thousand and 5.06 parts per thousand, respectively, a difference which may indicate a possible trophic change owing to exploiting different food resources. No differences were found between the two species in relation to delta C-13 (mean values of -26.2 parts per thousand and -26.1 parts per thousand, respectively). The similarity between delta C-13 values suggests that the sources of their basal feeding are the same, consisting mainly of C-3 plants. There was no intraspecific variation in the values of delta C-13 and delta N-15.
Resumo:
Stable carbon isotopic fractionation during calcium carbonate precipitation induced by urease-catalysed hydrolysis of urea was experimentally investigated in artificial water at a constant temperature of 30 degrees C. Carbon isotope fractionation during urea hydrolysis follows a Rayleigh distillation trend characterized by a C-13-enrichment factor of -20 to -22 parts per thousand. CaCO3 precipitate is up to 17.9 parts per thousand C-13-depleted relative to the urea substrate (-48.9 +/- 0.07 parts per thousand). Initial CaCO3 precipitate forms close to isotopic equilibrium with dissolved inorganic carbon. Subsequent precipitation occurs at -2 to -3 parts per thousand offset from isotopic equilibrium, suggesting that the initial delta C-13 value of CaCO3 is reset through dissolution followed by reprecipitation with urease molecules playing a role in offsetting the delta C-13 value of CaCO3 from isotopic equilibrium. Potentially, this isotopic systematics may provide a tool for the diagnosis of ureolytically-formed carbonate cements used as sealing agent. Moreover, it may serve as a basis to develop a carbon isotope tool for the quantification of ureolytically-induced CO2 sequestration. Finally, it suggests carbon isotope disequilibrium as a hallmark of past enzymatic activity in ancient microbial carbonate formation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Feeding experiments with C-13-labeled precursors were performed in order to establish the biosynthesis of two N-acylated dihydropyrroles, (8E)-1-(2,3-dihydro-1H-pyrrol-1-yl)-2- methyldec-8-ene-1,3-dione (1) and 1-(2,3-dihydro-1H-pyrrol-1-yl)-2- methyldecane-1,3-dione (2), isolated from the cultures of a marine-derived Penicillium citrinum. The biosynthesis of both, 1 and 2, involves the incorporation of acetate, methionine and ornithine.
Resumo:
Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO2 efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (delta C-13) of stem wood alpha-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P-W) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P-W, but to a lesser extent compared with K fertilization. Neither K nor Na affected delta C-13 of stem wood alpha-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P-W resulted from drastic changes in carbon allocation.
Resumo:
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.