Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
01/11/2013
01/11/2013
02/08/2013
|
Resumo |
We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling. National Aeronautic Space Administration's LBA [NCC5-345, NCC5-689] National Aeronautic Space Administrations LBA Division of Environmental Biology at the National Science Foundation (NSF) Division of Environmental Biology at the National Science Foundation (NSF) [0213585] NSF NSF |
Identificador |
LIMNOLOGY AND OCEANOGRAPHY, WACO, v. 57, n. 2, supl. 1, Part 3, pp. 527-540, MAR, 2012 0024-3590 http://www.producao.usp.br/handle/BDPI/37176 10.4319/lo.2012.57.2.0527 |
Idioma(s) |
eng |
Publicador |
AMER SOC LIMNOLOGY OCEANOGRAPHY WACO |
Relação |
LIMNOLOGY AND OCEANOGRAPHY |
Direitos |
restrictedAccess Copyright AMER SOC LIMNOLOGY OCEANOGRAPHY |
Palavras-Chave | #DISSOLVED ORGANIC-MATTER #FLOODPLAIN WATERS #MOLECULAR-WEIGHT #ATMOSPHERIC CO2 #HUDSON RIVER #AMINO-ACIDS #CARBON #OXYGEN #FRACTIONATION #METABOLISM #LIMNOLOGY #OCEANOGRAPHY |
Tipo |
article original article publishedVersion |