30 resultados para ANTIBACTERIAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schiff base ligand: N,N'-bis(1-phenylethylidene)ethane-1,2-diamine (L), was derived from acetophenone and ethylenediamine by condensation and its complexes (1-5) were prepared with Pb2+, Ni2+, Co2+, Cu2+ and Cd2+ metal ions. Their structures were characterized by FAB-MS, IR spectra, elemental analyses and molar conductance. The octahedral geometry of the complexes was proposed by electronic spectra and magnetic moment data. The conductivity data showed that the complexes have non-electrolytic nature. The complexes (1-5) have higher in vitro antimicrobial activity than the Schiff base ligand (L). In the nuclease activity, the complexes cleave DNA as compared to control DNA in the presence of H2O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmaniasis and Chagas disease are parasitic protozoan infections that affect the poorest population in the world, causing high mortality and morbidity. As a result of highly toxic and long-duration treatments, novel, safe and more efficacious drugs are essential. In this work, the methanol (MeOH) extract from the leaves of Piper malacophyllum (Piperaceae) was fractioned to afford one alkenylphenol, which was characterized as 4-[(3'E)-decenyl]phenol (gibbilimbol B) by spectroscopic methods. Anti-protozoan in vitro assays demonstrated for the first time that Leishmania (L.) infantum chagasi was susceptible to gibbilimbol B. with an in vitro EC50 of 23 mu g/mL against axenic promastigotes and an EC50 of 22 mu g/mL against intracellular amastigotes. Gibbilimbol B was also tested for anti-trypanosomal activity (Trypanosoma cruzi) and showed an EC50 value of 17 mu g/mL against trypomastigotes. To evaluate the cytotoxic parameters, this alkenylphenol was tested in vitro against NCTC cells, showing a CC50 of 59 mu g/mL and absent hemolytic activity at the highest concentration of 75 mu g/mL. Using the fluorescent probe SYTOX Green suggested that the alkenylphenol disrupted the Leishmania plasma membrane upon initial incubation. Further drug design studies aiming at derivatives could be a promising tool for the development of new therapeutic agents for leishmaniasis and Chagas disease. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Betulinic acid, a natural pentacyclic triterpene acid, presents a diverse mode of biological actions including antiretroviral, antibacterial, antimalarial, and anti-inflammatory activities. The potency of betulinic acid as an inhibitor of human platelet activation was evaluated, and its antiplatelet profile against in vitro platelet aggregation, induced by several platelet agonists (adenosine diphosphate, thrombin receptor activator peptide-14, and arachidonic acid), was explored. Flow cytometric analysis was performed to examine the effect of betulinic acid on P-selectin membrane expression and PAC-1 binding to activated platelets. Betulinic acid potently inhibits platelet aggregation and also reduced PAC-1 binding and the membrane expression of P-selectin. Principal component analysis was used to screen, on the chemical property space, for potential common pharmacophores of betulinic acid with approved antithrombotic drugs. A common pharmacophore was defined between the NMR-derived structure of betulinic acid and prostacyclin agonists (PGI2), and the importance of its carboxylate group in its antiplatelet activity was determined. The present results indicate that betulinic acid has potential use as an antithrombotic compound and suggest that the mechanism underlying the antiplatelet effects of betulinic acid is similar to that of the PGI2 receptor agonists, a hypothesis that deserves further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids. binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical investigation of the n-hexane and EtOAc fractions of the ethanolic extract from Styrax pohlii (Styracaceae) aerial parts resulted in the isolation of the benzofuran nor-neolignan derivatives egonol (1), homoegonol (2), homoegonol gentiobioside (3), homoegonol glucoside (4) and egonol gentiobioside (5). This is the first report of compounds 1-5 in S. pohlii. Compounds 1-5, the acetyl derivatives 1a and 2a, the ethanolic extract (EE), the n-hexane fraction (HF) and EtOAc fraction (EF) were tested for their inhibitory activities against COX-1 and COX-2. The results showed that EE, HF, EF and compounds 1-5 and 1 a-2 a shown weak to moderate inhibition of COX-1 and COX-2. Among the assayed nor-neolignans, 4 gave a COX-1 inhibition of 35.7% at 30 mu M. Compound 5 displayed a COX-2 inhibition of 19.7% at 30 mu M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic oxidation of chlorhexidine (CHX, a strong microbicidal agent) mediated by ironporphyrins has been investigated by using hydrogen peroxide, mCPBA, tBuOOH, or NaOCl as oxidant. All of these oxygen donors yielded p-chloroaniline (pCA) as the main product. The higher pCA yields amounted to 71% in the following conditions: catalyst/oxidant/substrate molar ratio of 1:150:50, aqueous medium, FeTMPyP as catalyst. The medium pH also had a strong effect on the pCA yields; in physiological pH, formation of this product was specially favored in the presence of the catalysts, with yields 58% higher than those achieved in control reactions. This provided strong evidence that CHX is metabolized to pCA upon ingestion. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 mu M, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the antimicrobial properties and cytotoxicity of the monomer methacryloyloxyundecylpyridinium bromide (MUPB), an antiseptic agent capable of copolymerizing with denture base acrylic resins. Materials and Methods: The antimicrobial activity of MUPB was tested against the species Candida albicans, Candida dubliniensis, Candida glabrata, Lactobacillus casei, Staphylococcus aureus, and Streptococcus mutans. The minimum inhibitory and fungicidal/bactericidal concentrations (MIC, MFC/MBC) of MUPB were determined by serial dilutions in comparison with cetylpyridinium chloride (CPC). The cytotoxic effects of MUPB at concentrations ranging from 0.01 to 1 g/L were assessed by MTT test on L929 cells and compared with methyl methacrylate (MMA). The antimicrobial activity of copolymerized MUPB was tested by means of acrylic resin specimens containing three concentrations of the monomer (0, 0.3, 0.6% w/w). Activity was quantified by means of a disc diffusion test and a quantification of adhered planktonic cells. Statistical analysis employed the Mann-Whitney test for MIC and MFC/MBC, and ANOVA for the microbial adherence test (a= 0.05). Results: MUBP presented lower MIC values when compared with CPC, although differences were significant for C. dubliniensis and S. mutans only (p= 0.046 and 0.043, respectively). MFC/MBC values were similar for all species except C. albicans; in that case, MUPB presented significantly higher values (p= 0.046). MUPB presented higher cytotoxicity than MMA for all tested concentrations (p < 0.001) except at 0.01 g/L. Irrespective of the concentration incorporated and species, there was no inhibition halo around the specimens. The incorporation of MUPB influenced the adhesion of C. albicans only (p= 0.003), with lower CFU counts for the 0.6% group. Conclusions: It was concluded that non-polymerized MUPB has an antimicrobial capacity close to that of CPC and high cytotoxicity when compared with MMA. The antimicrobial activity of MUPB after incorporation within a denture base acrylic resin did not depend on its elution, but was shown to be restricted to C. albicans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mygalin is an antibacterial molecule isolated froth the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-gamma synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-gamma activation. In addition, Mygalin-activated macrophages produced TNF-alpha but not IL-1 beta, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-gamma and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An octahedral Zn complex with o-phenanthroline (o-phen) and cyanoguanidine (cnge) has been synthesized and characterized. The crystal structural data show the formation of a ZnN5O core where the metal coordinates to two mutually perpendicular o-phenanthrolines as bidentate ligands [Zn-N bond lengths in the 2.124(2)-2.193(2) angstrom range], the cyanide nitrogen of a cnge [d(Zn-N) = 2.092(2) angstrom, angle(Zn-N-C) = 161.1(2)degrees], and a water molecule [d(Zn-Ow) = 2.112(2) angstrom]. Spectral data (FT-IR, Raman, and fluorescence) and speciation studies are in agreement with the structure found in the solid state and the one proposed to exist in the solution. To evaluate the changes in the microbiological activity of Zn, antibacterial studies were carried out by observing the changes in minimum inhibitory concentration of the complex, the ligands, and the metal against five different bacterial strains. The antibacterial activity of Zn improved upon complexation in three of the tested strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents two potential metallo-drugs, the ionic (C17H19FN3O3)(3)[RuCl6]center dot 3H(2)O (1) and the coordination [Ru(C17H17FN3O3)(3)]center dot 4H(2)O (2) compounds, obtained by the combination of ruthenium(III) and ciprofloxacin in different synthetic conditions. The ESI MS spectrum of 1 displayed a main peak at m/z = 994.6, assigned to the gaseous phase adduct (ciprofloxacin)(3)center dot H+, while 2 featured peaks at m/z 1093.3 and 547.1 ascribed to [Ru(C17H17FN3O3)(3)center dot H+-4H(2)O](+) and [Ru(C17H17FN3O3)(3)center dot 2H(+)-4H(2)O](2+). Thermal analysis corroborated the proposed water content for both complexes. Absorption spectra of the compounds in aqueous medium are dominated by ciprofloxacin transitions in the UV region but displayed weak bands in the visible region, assigned to ligand field transitions. The cyclic voltammograms of 2 exhibited a quasi-reversible process ascribed to the Ru(II)/(III) redox pair at -0.25V (vs. SHE) while 1 displayed this process at -0.11 V, showing that the central ruthenium ion is stabilized in the (III) oxidation state by the coordination to the hard oxygen atoms of ciprofloxacin. The solubility of 1 is pH dependent (as well as free ciprofloxacin) while 2 is fully water soluble and stable under physiological pH for at least 48 h. The compounds are also stable under incubation conditions (stomach pH and 37 degrees C) without significant pH lowering. An interaction study of 2 with ct-DNA showed a value of K-b = 2.47 (+/- 0.89) x 10(4) mol(-1) L for the intrinsic binding constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of nanomaterials, including metallic as active fillers in polymeric nanocomposites for food packaging has been extensively investigated. Silver nanoparticles (AgNPs), in particular, have been exploited for technological applications as bactericidal agents. In this paper, AgNPs were incorporated into a hydroxypropyl methylcellulose (HPMC) matrix for applications as food packaging materials. The average sizes of the silver nanoparticles were 41 nm and 100 nm, respectively. Mechanical analyses and water vapor barrier properties of the HPMC/AgNPs nanocomposites were analysed. The best results were observed for films containing smaller (41 nm) AgNPs. The antibacterial properties of HPMC/AgNPs thin films were evaluated based on the diameter of inhibition zone in a disk diffusion test against Escherichia coli (E. coil) and Staphylococcus aureus (S. aureus). The disk diffusion studies revealed a greater bactericidal effectiveness for nanocomposites films containing 41 nm Ag nanoparticles. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6. Methods Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity. Conclusion a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different species of Laurencia have proven to be a rich source of natural products yielding interesting bioactive halogenated secondary metabolites, such as terpenoids and acetogenins. It is shown that such compounds are accumulated in the spherical, reniform to claviform refractive inclusions called corps en cerise (CC), which are intensively osmiophilic and located mainly in the cortical cells of the thalli and also in trichoblast cells. Up to now, it was believed that CC were present only in these two kinds of cells. Recently, however, a species of Laurencia, L. marilzae, with CC in all cells of the thallus, i.e., cortical, medullary, including the pericentral and axial cells, as well as in the trichoblasts, was described from the Canary Islands, and subsequently also reported to Brazil and Mexico. Within the Laurencia complex, only Laurencia species produce CC. Since the species of Laurencia are targets of interest for the prospection of bioactive substances due to their potential antibacterial, antifungal, anticholinesterasic, antileishmanial, cytotoxic, and antioxidant activities, the present paper carries out a comparative analysis of the corps en cerise in several species of Laurencia from the Atlantic Ocean to obtain basic information that can support natural product bioprospection projects. Our results show that the number and size of the CC are constant within a species, independent of the geographical distribution, corroborating their use for taxonomical purposes to differentiate groups of species that present a lower number from those that have a higher number. In this regard, there was a tendency for the number of CC to be higher in some species of Laurencia from the Canary Islands. The presence of CC can also be used to distinguish species in which these organelles are present in all cells of the thallus from those in which CC are restricted to the cortical cells. Among the species analyzed, L. viridis displayed the most varied secondary metabolites composition, such as sesquiterpenes, diterpenes, triterpenes, all of which showed potent antiviral, cytotoxic, and antitumoral activities, including protein phosphatase type 2A (PP2A) inhibitory effects.