28 resultados para thermal stimulation method
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.
Resumo:
Noninvasive brain stimulation (NIBS) techniques are being increasingly investigated as a therapeutic approach for neuropsychiatric disorders. One method is to combine NIBS with pharmacotherapy to enhance the clinical effects or avoid an increase in drug dosages to decrease the incidence of side effects. However, few studies to date have investigated the relative and combined efficacy of NIBS with pharmacotherapy. Based on a literature review of previous studies and meta-analyses for major depression, we identified four randomized, controlled trials that tested the combination of NIBS with a new drug and two trials that directly compared NIBS versus pharmacotherapy. There was no study designed to address the relative efficacy of each intervention against placebo and against combined therapy. We discuss the methods and rationale of NIBS-pharmacotherapy trials, addressing some methodological aspects, including factorial design, recruitment, blinding, blinding assessment, placebo effect and quantitative aspects, such as power analysis, statistics and interaction effects. Our review of the methodology underlying NIBS-drug trials provides insights for the further clinical research development of NIBS in major depression.
Resumo:
Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.
Resumo:
Smoking cue-provoked craving is an intricate behavior associated with strong changes in neural networks. Craving is one of the main reasons subjects continue to smoke; therefore interventions that can modify activity in neural networks associated with craving can be useful tools in future research investigating novel treatments for smoking cessation. The goal of this study was to use a neuromodulatory technique associated with a powerful effect on spontaneous neuronal firing - transcranial direct current stimulation (tDCS) - to modify cue-provoked smoking craving. Based on preliminary data showing that craving can be modified after a single tDCS session, here we investigated the effects of repeated tDCS sessions on craving behavior. Twenty-seven subjects were randomized to receive sham or active tDCS (anodal tDCS of the left DLPFC). Our results show a significant cumulative effect of tDCS on modifying smoking cue-provoked craving. In fact, in the group of active stimulation, smoking cues had an opposite effect on craving after stimulation - it decreased craving - as compared to sham stimulation in which there was a small decrease or increase on craving. In addition, during these 5 days of stimulation there was a small but significant decrease in the number of cigarettes smoked in the active as compared to sham tDCS group. Our findings extend the results of our previous study as they confirm the notion that tDCS has a specific effect on craving behavior and that the effects of several sessions can increase the magnitude of its effect. These results open avenues for the exploration of this method as a therapeutic alternative for smoking cessation and also as a mean to change stimulus-induced behavior. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The neural control of the cardiovascular system is a complex process that involves many structures at different levels of nervous system. Several cortical areas are involved in the control of systemic blood pressure, such as the sensorimotor cortex, the medial prefrontal cortex and the insular cortex. Non-invasive brain stimulation techniques - repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) - induce sustained and prolonged functional changes of the human cerebral cortex. rTMS and tDCS has led to positive results in the treatment of some neurological and psychiatric disorders. Because experiments in animals show that cortical modulation can be an effective method to regulate the cardiovascular system, non-invasive brain stimulation might be a novel tool in the therapeutics of human arterial hypertension. We here review the experimental evidence that non-invasive brain stimulation can influence the autonomic nervous system and discuss the hypothesis that focal modulation of cortical excitability by rTMS or tDCS can influence sympathetic outflow and, eventually, blood pressure, thus providing a novel therapeutic tool for human arterial hypertension. (C) 2009 Published by Elsevier Ltd.
Resumo:
Major depressive disorder (MDD) trials - investigating either non-pharmacological or pharmacological interventions - have shown mixed results. Many reasons explain this heterogeneity, but one that stands out is the trial design due to specific challenges in the field. We aimed therefore to review the methodology of non-invasive brain stimulation (NIBS) trials and provide a framework to improve clinical trial design. We performed a systematic review for randomized, controlled MDD trials whose intervention was transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in MEDLINE and other databases from April 2002 to April 2008. We created an unstructured checklist based on CONSORT guidelines to extract items such as power analysis, sham method, blinding assessment, allocation concealment, operational criteria used for MDD, definition of refractory depression and primary study hypotheses. Thirty-one studies were included. We found that the main methodological issues can be divided in to three groups: (1) issues related to phase II/small trials, (2) issues related to MDD trials and, (3) specific issues of NIBS studies. Taken together, they can threaten study validity and lead to inconclusive results. Feasible solutions include: estimating the sample size a priori; measuring the degree of refractoriness of the subjects; specifying the primary hypothesis and statistical tests; controlling predictor variables through stratification randomization methods or using strict eligibility criteria; adjusting the study design to the target population; using adaptive designs and exploring NIBS efficacy employing biological markers. In conclusion, our study summarizes the main methodological issues of NIBS trials and proposes a number of alternatives to manage them. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.
Resumo:
Study aim. - We describe a new neuronavigation-guided technique to target the posterior-superior insula (PSI) using a cooled-double-cone coil for deep cortical stimulation. Introduction. - Despite the analgesic effects brought about by repetitive transcranial magnetic stimulation (TMS) to the primary motor and prefrontal cortices, a significant proportion of patients remain symptomatic. This encouraged the search for new targets that may provide stronger pain relief. There is growing evidence that the posterior insula is implicated in the integration of painful stimuli in different pain syndromes and in homeostatic thermal integration. Methods. - The primary motor cortex representation of the lower leg was used to calculate the motor threshold and thus, estimate the intensity of PSI stimulation. Results. - Seven healthy volunteers were stimulated at 10 Hz to the right PSI and showed subjective changes in cold perception. The technique was safe and well tolerated. Conclusions. - The right posterior-superior insula is worth being considered in future studies as a possible target for rTMS stimulation in chronic pain patients. (c) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Transcranial magnetic stimulation (TMS) is a promising method for both investigation and therapeutic treatment of psychiatric and neurologic disorders and, more recently, for brain mapping. This study describes the application of navigated TMS for motor cortex mapping in patients with a brain tumor located close to the precentral gyrus. Materials and methods: In this prospective study, six patients with low-grade gliomas in or near the precentral gyrus underwent TMS, and their motor responses were correlated to locations in the cortex around the lesion, generating a functional map overlaid on three-dimensional magnetic resonance imaging (MRI) scans of the brain. To determine the accuracy of this new method, we compared TMS mapping with the gold standard mapping with direct cortical electrical stimulation in surgery. The same navigation system and TMS-generated map were used during the surgical resection procedure. Results: The motor cortex could be clearly mapped using both methods. The locations corresponding to the hand and forearm, found during intraoperative mapping, showed a close spatial relationship to the homotopic areas identified by TMS mapping. The mean distance between TMS and direct cortical electrical stimulation (DES) was 4.16 +/- 1.02 mm (range: 2.56-5.27 mm). Conclusion: Preoperative mapping of the motor cortex with navigated TMS prior to brain tumor resection is a useful presurgical planning tool with good accuracy.
Resumo:
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aim: This study evaluates the contribution of inhibitory pain pathways that descend to the spinal cord through the dorsolateral funiculus (DLF) on the effect of intrathecal gabapentin against spinal nerve ligation (SNL)-induced behavioral hypersensitivity to mechanical stimulation in rats. Main method: Rats were submitted to a sham or complete ligation of the right LS and L6 spinal nerves and a sham or complete DLF lesion. Next, the changes induced by intrathecal administration of gabapentin on the paw withdrawal threshold of rats to mechanical stimulation were evaluated electronically. Key findings: Intrathecal gabapentin (200 mu g/5 mu l) that was injected 2 or 7 days after surgery fully inhibited the SNL-induced behavioral hypersensitivity to mechanical stimulation in sham DLF-Iesioned rats; gabapentin was effective against the SNL-induced behavioral hypersensitivity to mechanical stimulation also in DLF-Iesioned rats. Significance: The effect of intrathecally administered gabapentin against SNL-induced behavioral hypersensitivity to mechanical stimulation in rats does not depend on the activation of nerve fibers that descend to the spinal cord via the DLF. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Context and objective: The massive production of reactive oxygen species by neutrophils during inflammation may cause damage to tissues. Flavonoids act as antioxidants and have anti-inflammatory effects. In this study, liposomes loaded with these compounds were evaluated as potential antioxidant carriers, in attempt to overcome their poor solubility and stability. Materials and methods: Liposomes containing quercetin, myricetin, kaempferol or galangin were prepared by the ethanol injection method and analyzed as inhibitors of immune complex (IC) and phorbol ester-stimulated neutrophil oxidative metabolism by luminol (CLlum) and lucigenin-enhanced (CLluc) chemiluminescence (CL) assays. The mechanisms involved this activity of liposomal flavonoids, such as cytotoxicity and superoxide anion scavenging capacity, and their effect on phagocytosis of ICs were also investigated. Results and discussion: The results showed that the inhibitory effect of liposomal flavonoids on CLlum and CLluc is inversely related to the number of hydroxyl groups in the flavonoid B ring. Moreover, phagocytosis of liposomes by neutrophils does not seem to necessarily promote such activity, as the liposomal flavonoids are also able to reduce CL when the cells are pretreated with cytochalasin B. Under assessed conditions, the antioxidant liposomes are not toxic to the human neutrophils and do not interfere with IC-induced phagocytosis. Conclusion: The studied liposomes can be suitable carriers of flavonoids and be an alternative for the treatment of diseases in which a massive oxidative metabolism of neutrophils is involved.
Resumo:
Vanadium oxide nanotubes (NTs) were synthesized by the sol-gel method followed by a long-term hydrothermal treatment. The obtained nanotubes have a multiwall structure, and 70% of vanadium ions are in the V4+ state. This percentage was derived by evaluating three components of the magnetic susceptibility; namely, (i) the paramagnetic Curie-Weiss behavior, (ii) antiferromagnetic dimers, and (iii) magnetic trimers. The as-made NTs were annealed in situ in the cavity of the electron paramagnetic resonance (EPR) spectrometer. The line shape changes irreversibly at 390 K, and the EPR susceptibility presents an anomaly at 425 K. These changes are interpreted as a partial oxidation of the V4+ ions and consequently a decrease in the concentration of the magnetic species. The quantification of the V4+ ions of the annealed NTs reveals a diminution to 39% of V4+, a weakening of the Curie-Weiss and antiferromagnetic dimers contributions, and the suppression of magnetic trimers. Vibrational studies confirm the decrease of V4+ amount. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749417]
Resumo:
Aim: This study examines if injection of cobalt chloride (CoCl2) or antagonists of muscarinic cholinergic (atropine), mu(1)-opioid (naloxonazine) or 5-HT1 serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. Main method: Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl2 (1 mM, 0.10 mu L) or antagonists into the dorsal or ventral APtN. Key findings: The injection of CoCl2, naloxonazine (5 mu g/0.10 mu L) or methiothepin (3 mu g/0.10 mu L) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 mu L) or ketanserine (5 mu g/0.10 mu L) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. Significance: mu(1)-opioid- and 5-HT1-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C (6.43 +/- 3.24 mu m) when compared to Groups A (16.50 +/- 7.55 mu m) and B (16.27 +/- 1.71 mu m) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66 +/- 14.30 mu m; Group B, 39.4.8 +/- 12.03 mu m; Group C, 23.13 +/- 8.24 mu m) (P<.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. [J Adv Prosthodont 2012;4:89-92]