16 resultados para inter-simple sequence repeat
Resumo:
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.
Resumo:
Premise of the study: A set of eight microsatellite (simple sequence repeat [SSR]) markers for Lippia alba, an important medicinal and cosmetic plant, was developed to aid studies of genetic diversity and to define efficient strategies for breeding programs. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 11 SSR loci were developed and optimized in L. alba. Of the 11 loci, eight were found to be polymorphic after screening 61 accessions from two populations. The parameters used to characterize loci were expected heterozygosity (H-e) and number of alleles. A total of 44 alleles were identified, with an average of 5.5 alleles per loci, which were moderately to highly informative according to H-e. Conclusions: These new SSR markers have potential for informing genetic diversity, allele mining, and mapping studies and will be used to generate information for breeding programs of L. alba
Resumo:
Premise of the study: Microsatellite markers were developed and characterized to investigate genetic diversity and gene flow and to help in conservation efforts for the endangered timber species Plathymenia reticulata. Methods and Results: Eleven microsatellite loci were characterized using 60 adult trees of two populations of P. reticulata from the Atlantic Forest of southern Bahia, Brazil. Of these, nine loci were polymorphic, with an average of 4.39 alleles per locus. The average expected heterozygosity per population ranged from 0.47 to 0.55. The combined exclusion probability was 0.99996. Conclusions: Our results reveal that the microsatellite markers developed in this study are an effective tool for paternity and genetic structure analysis that may be useful for conservation strategies.
Resumo:
Premise of the study: We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Methods and Results: Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirao Preto in Sao Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. Conclusions: A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Resumo:
Premise of the study: Microsatellite primers were developed to investigate genetic diversity and population structure of Qualea grandiflora, a typical species of the Brazilian cerrado. Methods and Results: Eight microsatellite loci were isolated using an enrichment cloning protocol. These loci were tested on a population of 110 individuals of Q. grandiflora collected from a cerrado fragment in Sao Paulo State, Brazil. The loci polymorphism ranges from seven to 19 alleles and the average heterozygosity value is 0.568, while the average polymorphic information content is 0.799. Conclusions: The developed markers were found to be highly polymorphic, indicating their applicability to studies of population genetic diversity in Q. grandiflora
Resumo:
Premise of the study: A new set of microsatellite or simple sequence repeat (SSR) markers for garlic, an important medicinal spice, was developed to aid studies of genetic diversity and to define efficient strategies for germplasm conservation. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 16 SSR loci were developed and optimized in garlic. Ten loci were found to be polymorphic after screening 75 accessions. The parameters used to characterize the loci were observed and expected heterozygosity, number of alleles, Shannon Index, and polymorphism information content (PIC). A total of 44 alleles were identified, with an average of 4.4 alleles per loci. The vast majority of loci were moderate to highly informative according to PIC and the Shannon Index. Conclusion: The new SSR markers have the potential to be informative tools for genetic diversity, allele mining, mapping and associative studies, and in the management and conservation of garlic collections.
Resumo:
Abstract Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.
Resumo:
Abstract Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.
Resumo:
Background: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.
Resumo:
We study the spectral functions, and in particular the zeta function, associated to a class of sequences of complex numbers, called of spectral type. We investigate the decomposability of the zeta function associated to a double sequence with respect to some simple sequence, and we provide a technique for obtaining the first terms in the Laurent expansion at zero of the zeta function associated to a double sequence.
Resumo:
Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.
Resumo:
Broad-host-range plasmid pRIO-5, harboring the extended-spectrum beta-lactamase bla(BES-1) gene in Serratia marcescens, was fully sequenced. Analysis of the 12,957-bp sequence of this IncP6-type plasmid revealed that the bla(BES-1) gene was associated with two copies of the insertion sequence IS26. The promoter responsible for the bla(BES-1) expression was hybrid, made of a - 35 box located inside the inverted repeat of IS26 and a - 10 box inside a remnant of an insertion sequence.
Resumo:
SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Short tandem DNA repeats and telomerase compose the telomere structure in the vast majority of eukaryotic organisms. However, such a conserved organisation has not been found in dipterans. While telomeric DNA in Drosophila is composed of specific retrotransposons, complex terminal tandem repeats are present in chromosomes of Anopheles and chironomid species. In the sciarid Rhynchosciara americana, short repeats (16 and 22 bp long) tandemly arrayed seem to reach chromosome ends. Moreover, in situ hybridisation data using homopolymeric RNA probes suggested in this species the existence of a third putative chromosome end repeat enriched with (dA).(dT) homopolymers. In this work, chromosome micro-dissection and PCR primed by homopolymeric primers were employed to clone these repeats. Named T-14 and 93 % AT-rich, the repetitive unit is 14 bp long and appears organised in tandem arrays. It is localised in five non-centromeric ends and in four interstitial bands of R. americana chromosomes. To date, T-14 is the shortest repeat that has been characterised in chromosome ends of dipterans. As observed for short tandem repeats identified previously in chromosome ends of R. americana, the T-14 probe hybridised to bridges connecting non-homologous polytene chromosome ends, indicative of close association of T-14 repeats with the very end of the chromosomes. The results of this work suggest that R. americana represents an additional example of organism provided with more than one DNA sequence that is able to reach chromosome termini.
Resumo:
A method for the simultaneous quantification of lycopene, beta-carotene, retinol and alpha-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20 degrees C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra-and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20 degrees C. A significant decrease of lycopene, beta-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.