34 resultados para dentin permeability
Resumo:
Objective. To evaluate the effect of an experimental gel containing Euclea natalensis extract on dentin permeability. Methods. Thirty-six dentin discs, 1-mm-thick. The discs were prepared from the coronal dentin of extracted human third molars that were divided into 3 groups (n = 10). The dentin discs in each group were treated with the groups following experimental materials: (FG): 1.23% fluoride gel, pH 4.1; (EG): Euclea natalensis extract gel, pH 4.1; (CG): control gel, pH 4.1. The gels were applied to the occlusal slide of the dentin under the following conditions: after 37% phosphoric acid and before 6% citric acid. The hydraulic conductance (HC) of each condition was determined four times using a fluid flow apparatus (Flodec). The data were analyzed using Two-way ANOVA and Tukey's test (P < 0.05). Results. The greatest mean reduction in HC was produced in group EG dentin discs (61.2%; P < 0.05). Even after acid challenge with 6% citric acid the great reduction occurred in group EG (66.0%; P < 0.05) than other groups (CG-77.1%, FG-90.8%). Conclusion. E. natalensis gel not only reduced dentin permeability, but also resisted posttreatment citric acid challenge without changing its permeability. Further research has to confirm this promising result in the clinical situation.
Resumo:
Objective: The aim of this study was to evaluate, through a crossover 2 x 2 in situ trial, the effect of a desensitizing dentifrice associated with CO2 laser irradiation to control the permeability of eroded root dentin. Background data: Facing the increased prevalence of erosive lesion and the need for preventive means to control painful symptoms related to them. Methods: Eighty slabs of bovine root dentin were subjected to initial erosive challenge (citric acid 0.3%, 2 h), followed by a remineralizing period in artificial saliva (24 h). Specimens were then divided according to dentin treatment: desensitizing dentifrice, desensitizing dentifrice + CO2 laser, fluoride anticavity dentifrice. and fluoride anticavity dentifrice + CO2 laser. After a 2-day lead-in period, 10 volunteers wore an intraoral palatal appliance containing four root dentin slabs, in two phases of 5 days each. During the intraoral phase, one side of the appliance was immersed in 0.3% citric acid, and the opposite side was immersed in deionized water, four times a day. One hour after the immersions, all specimens were brushed with dentifrice slurry provided by the researcher. After a 7-day washout period, volunteers were crossed over on the different dentifrice group. Each phase having been completed, the specimens were evaluated for permeability through an optical microscope. Results: Data were analyzed using ANOVA and no significant difference (p = 0.272) was found between the surface treatments performed on bovine root dentin. Conclusions: It can be concluded that fluoride anticavity or desensitizing dentifrice, regardless of the association with the CO2 laser irradiation, was able to control the permeability of eroded root dentin.
Resumo:
This study examined the immediate bond strength of etch-and-rinse adhesives to demineralized dentin saturated with either water or absolute ethanol. The research hypothesis was that there would be no difference in bond strength to dentin between water or ethanol wet-bonding techniques. The medium dentin of 20 third molars was exposed (n = 5). The dentin surface was then acid-etched, left moist and randomly assigned to be saturated via either water wet-bonding (WBT) or absolute ethanol wet-bonding (EBT). The specimens were then treated with one of the following etch-and-rinse adhesive systems: a 3-step, water-based system (Adper Scotchbond Multipurpose, or SBMP) or a 2-step, ethanol/water-based system (Adper Single Bond 2, or SB). Resin composite build-ups were then incrementally constructed. After water storage for 24 h at 37 degrees C, the tensile strength of the specimens was tested in a universal testing machine (0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey's test (alpha = 5%). The failure modes were verified using a stereomicroscope (40x). For both adhesives, no significant difference in bond strength was observed between WBT and EBT (p > 0.05). The highest bond strength was observed for SB, regardless of the bonding technique (p < 0.05). No significant interaction between adhesives and bonding techniques was noticed (p = 0.597). There was a predominance of adhesive failures for all tested groups. The EBT and WBT displayed similar immediate bond strength means for both adhesives. The SB adhesive exhibited higher means for all conditions tested. Further investigations are needed to evaluate long-term bonding to dentin mediated by commercial etch-and-rinse adhesives using the EBT approach.
Resumo:
The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.
Resumo:
Background & aims: Altered intestinal permeability has been shown to be associated with metabolic alterations in animal models of obesity, but not in humans. The aim of this study was to assess intestinal permeability in obese women and verify if there is any association with anthropometric measurements, body composition or biochemical variables. Methods: Twenty lean and twenty obese females participated in the study. Anthropometric measurements, body composition and blood pressure were assessed and biochemical analyses were performed. Administration of lactulose and mannitol followed by their quantification in urine was used to assess the intestinal permeability of volunteers. Results: The obese group showed lower HDL (p < 0.05), higher fasting glucose, insulin, HOMA index and lactulose excretion than the lean group (p < 0.05), suggesting increased paracellular permeability. Lactulose excretion showed positive correlation (p < 0.05) with waist and abdominal circumference. Blood insulin and the HOMA index also increased with the increase in mannitol and lactulose excretion and in the L/M ratio (p < 0.05). L/M ratio presented a negative correlation with HDL concentration (p < 0.05). Conclusions: We demonstrated that intestinal permeability parameters in obese women are positively correlated with anthropometric measurements and metabolic variables. Therapeutic interventions focused on intestine health and the modulation of intestinal permeability should be explored in the context of obesity. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.
Resumo:
Purpose: To investigate the laboratory effect of Er:YAG laser on ablation rate and morphological changes in human enamel and dentin with varying water flow. Methods: 23 human third molars were sectioned in mesio-distal and buccal-lingual directions. The slabs were flattened and weighted on an analytical laboratory balance (control). A 4-mm(2) area was demarcated and the samples were randomly assigned into three groups according to water flow employed during the laser irradiation (1.0, 1.5, and 2.0 mL/minute). An Er:YAG laser was used to ablate enamel (80.22-J/cm(2), 300 mJ/4Hz) and dentin (96.26-J/cm(2), 250 mJ/4Hz). After irradiation, the samples were immersed in distilled water for 1 hour and then weighted again. The final mass was obtained and laser-irradiated substrate mass loss was calculated by the difference between the initial and final mass. Afterwards, specimens were prepared for SEM. Results: Data were submitted to ANOVA and Tukey's test (P< 0.05). It was observed that the 2.0 mL/minute resulted in a higher mass loss, 1.0 mL/minute showed a lower mass loss, and 1.5 mL/minute demonstrated intermediate results (P< 0.05). The increase of water flow promoted less melting areas and cracks. Furthermore, dentin was more ablated than enamel. It may be concluded that the water flow of Er:YAG laser and the substrates affected the ablation rate. Among the tested parameters, 2.0 mL/minute improved the ability of ablation in enamel and dentin, with less morphologic surface alteration. (Am J Dent 20 12;25:332-336).
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
If riparian buffer zones are ineffective in preventing C-4 plant carbon from upland areas reaching the stream sediment, the composition of stream fauna can be significantly altered. The permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil was measured in nine watersheds categorised according to the predominant land cover of the legally required 30-m buffer riparian zone. Four watersheds with well preserved riparian forest along the 30-m buffer zone were designated as FOREST watersheds; three watersheds, with a predominance of C-4 grasses from sugarcane to pasture, mixed with preserved riparian forests, were designated MIXED watersheds; and two watersheds were termed PASTURE-SUGAR because their entire 30-m buffer zone was covered by C-4 plants. Stable carbon (delta C-13) isotopes were used as tracers of upland C-4 carbon in sediments, suspended particulate organic carbon, terrestrial and aquatic invertebrates and two species of neotropical fish. Although the intact 30-m buffer zone of riparian forests did not entirely prevent the input of C-4 to the river environment and food web, there was a significant increase in C-4 carbon in those watersheds where the buffer zone was not covered by riparian forests. These findings emphasise the importance of riparian forests in mitigating disturbance in streams and support efforts to preserve such riparian corridors.
Resumo:
Purpose: To evaluate the effect of a 1.23% acidulated phosphate fluoride (APF) gel combined with CO2 laser in protecting carious root dentin against further cariogenic challenges. Methods: After a 7-day lead-in period, 12 volunteers wore an intraoral palatal device containing four carious root dentin slabs, treated with APF and APF+CO2 or placebo and placebo+CO2. After a 14-day wash-out period, volunteers were crossed-over to the other treatment arm. During both intraoral phases, specimens were submitted to cariogenic challenges and then evaluated for cross-sectional Knoop microhardness. Results: Two-way ANOVA demonstrated that there was significant effect for both main factors: CO2 laser irradiation (P< 0.0001) and gel treatment (P< 0.0001), and that there was no interaction between them (P= 0.4706). Protection of carious root dentin against further cariogenic challenges may be provided by APF fluoride gel and CO2 laser, but no additive benefit was found by combining such strategies. (Am J Dent 2012;25:114-117).
Resumo:
Purpose: To assess the influence of ozone gas and ozonated water application to prepared cavity and bonded interfaces on the resin/dentin bond strength of two-step etch-and-rinse adhesive systems (Adper Single Bond 2 [SB2] and XP-Bond [XP]). Materials and Methods: Sixty extracted human third molars were sectioned perpendicularly to their long axes to expose flat occlusal dentin surfaces. In experiment 1, dentin was treated with ozone before the bonding procedure, while in experiment 2, ozone was applied to resin/dentin bonded interfaces. In experiment 1, dentin surfaces were treated either with ozone gas (2100 ppm), ozonated water (3.5 ppm), or distilled water for 120 s, and then bonded with SB2 or XP according to manufacturers' instructions. Hybrid composite buildups were incrementally constructed and the teeth were sectioned into resin-dentin sticks (0.8 mm(2)). In experiment 2, dentin surfaces were first bonded with SB2 or XP, composite buildups were constructed, and bonded sticks obtained. The sticks were treated with ozone as previously described. Bonded sticks were tested under tensile stress at 1 mm/min. Silver nitrate impregnation along the resin/dentin interfaces was also evaluated under SEM. Results: Two-way ANOVA (adhesive and ozone treatment) detected no significant effect for the cross-product interaction and the main factors in the two experiments (p > 0.05), which was confirmed by the photomicrographs. Conclusion: Ozone gas and ozonated water used before the bonding procedure or on resin/dentin bonded interfaces have no deleterious effects on the bond strengths and interfaces.
Resumo:
Purpose: To evaluate whether Nd:YAG laser irradiation of etched and unetched dentin through an uncured adhesive affected the microtensile bond strength (pTBS). Materials and Methods: Flat dentin surfaces were created in 19 extracted human third molars. Adper Single Bond (SB) adhesive was applied over etched (groups 1 to 3) or unetched dentin (groups 4 to 6). The dentin was then irradiated with a Nd:YAG laser through the uncured adhesive, using 0.75 or 1 W power settings, except for the control groups (groups 1 and 4). The adhesive was light cured and composite crowns were built up. After 24 h, the teeth were sectioned into beams, with cross-sectional areas of 0.49 mm(2), and were stressed under tension. Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha = 5%). Dentin surfaces of fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). Results: Acid etching, laser irradiation, and their interaction significantly affected bonding (p < 0.05). Laser irradiation did not improve bonding of etched dentin to resin (p > 0.05). However, higher pTBS means were found on unetched lased dentin (groups 5 and 6), but only in comparison to group 4, where neither lasing nor etching was performed. Groups 4 to 6 showed the lowest pTBS means among all groups tested (p < 0.05). Laser irradiation did not change the characteristics of the hybrid layers created, while solidification globules were observed on lased dentin surfaces under SEM. Conclusion: Laser irradiation of dentin through the uncured adhesive did not significantly improve the pTBS in comparison to the suggested manufacturer's technique.
Resumo:
Objectives. This in vitro study aimed to analyze the effect of TiF4 compared to NaF varnishes and solutions, to protect against dentin erosion associated with abrasion. Materials and methods. Bovine dentin specimens were pre-treated with NaF-Duraphat (2.26% F), NaF/CaF2-Duofluorid (5.63% F), experimental-NaF (2.45% F), experimental-TiF4 (2.45% F) and placebo varnishes; NaF (2.26% F) and TiF4 (2.45% F) solutions. Controls remained untreated. The erosive pH cycling was performed using a soft drink (pH 2.6) 4 x 90 s/day and the toothbrushing-abrasion 2 x 10 s/day, in vitro for 5 days. Between the challenges, the specimens were exposed to artificial saliva. Dentin tissue loss was measured profilometrically (mu m). Results. ANOVA/Tukey's test showed that all fluoridated varnishes (Duraphat, 7.5 +/- 1.1; Duofluorid, 6.8 +/- 1.1; NaF, 7.2 +/- 1.9; TiF4, 6.5 +/- 1.0) were able to significantly reduce dentin tissue loss (40.7% reduction compared to control) when compared to placebo varnish (11.2 +/- 1.3), control (11.8 +/- 1.7) and fluoridated (NaF, 9.9 +/- 1.8; TiF4, 10.3 +/- 2.1) solutions (p < 0.0001), which in turn did not significantly differ from each other. Conclusion. All fluoridated varnishes, but not the solutions, had a similar performance and a good potential to reduce dentin tissue loss under mild erosive and abrasive conditions in vitro. Risk patients for erosion and abrasion, especially those with exposed dentin, should benefit from this clinical preventive measure. Further research has to confirm this promising result in the clinical situation.
Resumo:
The objective of this study was to evaluate the influence of Er:YAG laser (lambda = 2.94 mu m) on microtensile bond strength (mu TBS) and superficial morphology of bovine dentin bleached with 16% carbamide peroxide. Forty bovine teeth blocks (7 x 3 x 3 mm(3)) were randomly assigned to four groups: G1- bleaching and Er:YAG irradiation with energy density of 25.56 J/cm(2) (focused mode); G2 - bleaching; G3 - no-bleaching and Er:YAG irradiation (25.56 J/cm(2)); G4 - control, non-treated. G1 and G2 were bleached with 16% carbamide peroxide for 6 h during 21 days. Afterwards, all blocks were abraded with 320 to 600-grit abrasive papers to obtain flat standardized dentin surfaces. G1 and G3 were Er:YAG irradiated. Blocks were immediately restored with 4-mm-high composite resin (Adper Single Bond 2, Z-250-3 M/ESPE). After 24 h, the restored blocks (n = 9) were serially sectioned and trimmed to an hour-glass shape of approximately 1 mm(2) at the bonded interface area, and tested in tension in a universal testing machine (1 mm/ min). Failure mode was determined at a magnification of 100x using a stereomicroscope. One block of each group was selected for scanning electron microscope (SEM) analysis. mu TBS data was analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Mean bond strengths (SD) in MPa were: G1- 32.7 (5.9)(A); G2- 31.1 (6.3)(A); G3- 25.2 (8.3)(B); G4- 36.7 (9.9).(A) Groups with different uppercase letters were significantly different from each other (p < .05). Enamel bleaching procedure did not affect mu TBS values for dentin adhesion. Er:YAG laser irradiation with 25.56 J/cm(2) prior to adhesive procedure of bleached teeth did not affect mu TBS at dentin and promoted a dentin surface with no smear layer and opened dentin tubules observed under SEM. On the other hand, Er:YAG laser irradiation prior to adhesive procedure of non-bleached surface impaired mu TBS compared to the control group.