21 resultados para PLASMA-CELLS
Resumo:
The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.
Resumo:
Prolonged survival of long-lived antibody-secreting cells in the BM has been implicated as a key component of long-term humoral immunity. The current study was designed to uncover the extrinsic signals required for the generation and maintenance of ASC in several niches (peritoneum, spleen and bone-marrow). Our results show that protein mixture of the Thalassophryne nattereri venom induced a chronic Th2 humoral response that is characterized by splenic hyperplasia with GC formation and venom retention by follicular DCs. Retention of B1a in the BM were observed. In the late phase (120 d) of chronic venom-response the largest pool of ASC into the peritoneal cavity consisted of B220(neg)CD43(high) phenotype; the largest pool of ASC into spleen was constituted by B220 positive cells (B220(high) and B220(low)), whereas the largest pool of ASC into in the BM was constituted by the B220(high)CD43(low) phenotype; and finally, terminally differentiated cells (B220(neg)CD43(high)) were only maintained in the inflamed peritoneal cavity in late phase. After 120 d a sustained production of cytokines (KC, IL-5, TNF-alpha, IL-6, IL-17A and IL-23) and leukocytes recruitment (eosinophils, mast cells, and neutrophils) were induced. IL-5- and IL-17A-producing CD4+ CD44+ CD40L+ Ly6C+ effector memory T cells were also observed in peritoneal cavity. Finally, treatment of venom-mice with anti-IL-5- and anti-IL17A-neutralizing mAbs abolished the synthesis of specific IgE, without modifying the splenic hyperplasia or GC formation. In addition, IL-5 and IL-17A negatively regulated the expansion of B1a in peritoneal cavity and BM, and promoted the differentiation of these cells in spleen. And more, IL-5 and IL-17A are sufficient for the generation of ASC B220(neg) in the peritoneal cavity and negatively regulate the number of ASC B220(Pos), confirming that the hierarchical process of ASC differentiation triggered by venom needs the signal derived from IL-5 and IL-17A. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Schistosoma mansoni synthesizes glycoconjugates which interact with galectin-3, eliciting an intense humoral immune response. Moreover, it was demonstrated that galectin-3 regulates B cell differentiation into plasma cells. Splenomegaly is a hallmark event characterized by polyclonal B cell activation and enhancement of antibody production. Here, we investigated whether galectin-3 interferes with spleen organization and B cell compartment during chronic schistosomiasis, using wild type (WT) and galectin-3(-/-) mice. In chronically-infected galectin-3(-/-) mice the histological architecture of the spleen, including white and red pulps, was disturbed with heterogeneous lymphoid follicles, an increased number of plasma cells (CD19(-)B220(-/low)CD138(+)) and a reduced number of macrophages (CD19(-)B220(-)Mac-1(+)CD138(-)) and B lymphocytes (CD19(+)B220(+/high)CD138(-)), compared with the WT infected mice. In the absence of galectin-3 there was an increase of annexin-V+PI- cells and a major presence of apoptotic cells in spleen compared with WT infected mice. In spleen of WT infected mice galectin-3 was largely expressed in lymphoid follicles and extrafollicular sites. Thus, we propose that galectin-3 plays a role in splenic architecture, controlling distinct events such as apoptosis, macrophage activity, B cell differentiation and plasmacytogenesis in the course of S. mansoni infection.
Resumo:
The diagnosis of T-cell large granular lymphocytic leukemia in association with other B-cell disorders is uncommon but not unknown. However, the concomitant presence of three hematological diseases is extraordinarily rare. We report an 88-year-old male patient with three simultaneous clonal disorders, that is, CD4+/CD8(weak) T-cell large granular lymphocytic leukemia, monoclonal gammopathy of unknown significance and monoclonal B-cell lymphocytosis. The patient has only minimal complaints and has no anemia, neutropenia or thrombocytopenia. Lymphadenopathy and hepatosplenomegaly were not present. The three disorders were characterized by flow cytometry analysis, and the clonality of the T-cell large granular lymphocytic leukemia was confirmed by polymerase chain reaction. Interestingly, the patient has different B-cell clones, given that plasma cells of monoclonal gammopathy of unknown significance exhibited a kappa light-chain restriction population and, on the other hand, B-lymphocytes of monoclonal B-cell lymphocytosis exhibited a lambda light-chain restriction population. This finding does not support the antigen-driven hypothesis for the development of multi-compartment diseases, but suggests that T-cell large granular lymphocytic expansion might represent a direct antitumor immunological response to both B-cell and plasma-cell aberrant populations, as part of the immune surveillance against malignant neoplasms.
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Resumo:
Eighty-six newly diagnosed multiple myeloma (MM) patients from a public hospital of São Paulo (Brazil) were evaluated by cIg-FISH for the presence of del(13)(q14), t(4;14)(p16.3;q32) and del(17)(p13). These abnormalities were observed in 46.5, 9.3, and 7.0% of the patients, respectively. In order to identify the possible role of del(13)(q14) in the physiopathology of MM, we investigated the association between this abnormality and the proliferative and apoptotic indexes of plasma cells. When cases demonstrating t(4;14)(p16.3;q32) and del(17)(p13) were excluded from the analysis, we observed a trend towards a positive correlation between the proportion of cells carrying del(13)(q14) and plasma cell proliferation, determined by Ki-67 expression (r = 0.23, P = 0.06). On the other hand, no correlation between the proportion of cells carrying del(13)(q14) and apoptosis, determined by annexin-V staining, was detected (r = 0.05, P = 0.69). In general, patients carrying del(13)(q14) did not have lower survival than patients without del(13)(q14) (P = 0.15), but patients with more than 80% of cells carrying del(13)(q14) showed a lower overall survival (P = 0.033). These results suggest that, when del(13)(q14) is observed in a high proportion of malignant cells, it may have a role in determining MM prognosis. Another finding was a statistically significant lower overall survival of patients with t(4;14)(p16.3;q32) (P = 0.026). In the present study, almost half the patients with t(4;14)(p16.3;q32) died just after diagnosis, before starting treatment. This fact suggests that, in São Paulo, there may be even more patients with this chromosomal abnormality, but they probably die before being diagnosed due to unfavorable socioeconomic conditions. This could explain the low prevalence of this chromosomal abnormality observed in the present study.
Resumo:
Objective: The aim of this study was to investigate the effects of PRP on SAOS-2 cells in terms of cytokine expression, cell activity and oxidative stress. Design: Cell line SAOS-2 (1 x 10(5) cells/mL) were grown in culture medium alpha-MEM with 10% FBS for 24 h and stimulated (or not) with PRP at concentrations of 3, 10 and 20%, LPS (E. coli, 10 g/mL) and IL-1 beta (1 mg/mL) for 24 h. The supernatant was collected and analyzed for the expression of cytokines in a panel array, ALP using a commercial kit and NO2- with Griess reaction method. Also, the cells were analyzed using Western blot for RANKL and slot blotting for nitrotyrosine expression. Result: There were no significant differences amongst the groups in terms of NO2-, protein nitrotyrosine content and RANKL expression. However, all stimuli increased ALP activity and in case of PRP, it was in a dose-dependent manner (p < 0.001). Also, all stimuli induced an increase in cytokines and chemokines expression, but only PRP promoted an increase of component C5, sICAM-1 and RANTES expression. Whilst IL-1 receptor antagonist (IL-1ra) expression was down-regulated by PRP, both LPS and IL-1 beta caused up-regulation of this cytokine. Conclusions: PRP can stimulate osteoblast activity and cytokine/chemokine release, as well as indicate some of the mediators that can (and cannot) be involved in this activation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The interaction of acute lymphoblastic leukemia (ALL) blasts with bone marrow (BM) stromal cells (BMSCs) has a positive impact on ALL resistance to chemotherapy. We investigated the modulation of a series of putative asparaginase-resistance/sensitivity genes in B-precursor ALL cells upon coculture with BMSCs. Coculture with stromal cells resulted in increased insulin-like growth factor (IGF)-binding protein 7 (IGFBP7) expression by ALL cells. Assays with IGFBP7 knockdown ALL and stromal cell lines, or with addition of recombinant rIGFBP7 (rIGFBP7) to the culture medium, showed that IGFBP7 acts as a positive regulator of ALL and stromal cells growth, and significantly enhances in-vitro resistance of ALL to asparaginase. In these assays, IGFBP7 function occurred mainly in an insulin-and stromal-dependent manner. ALL cells were found to contribute substantially to extracellular IGFBP7 levels in the conditioned coculture medium. Diagnostic BM plasma from children with ALL had higher levels of IGFBP7 than controls. IGFBP7, in an insulin/IGF-dependent manner, enhanced asparagine synthetase expression and asparagine secretion by BMSCs, thus providing a stromal-dependent mechanism by which IGFBP7 protects ALL cells against asparaginase in this coculture system. Importantly, higher IGFBP7 mRNA levels were associated with lower leukemia-free survival (Cox regression model, P = 0.003) in precursor B-cell Ph(-) ALL patients (n = 147) treated with a contemporary polychemotherapy protocol.
Resumo:
Introduction: The increasing number of reports on the relation between transfusion of stored red blood cells (RBCs) and adverse patient outcome has sparked an intense debate on the benefits and risks of blood transfusions. Meanwhile, the pathophysiological mechanisms underlying this postulated relation remain unclear. The development of hemolysis during storage might contribute to this mechanism by release of free hemoglobin (fHb), a potent nitric oxide (NO) scavenger, which may impair vasodilation and microcirculatory perfusion after transfusion. The objective of this prospective observational pilot study was to establish whether RBC transfusion results in increased circulating fHb levels and plasma NO consumption. In addition, the relation between increased fHb values and circulating haptoglobin, its natural scavenger, was studied. Methods: Thirty patients electively received 1 stored packed RBC unit (n = 8) or 2 stored packed RBC units (n = 22). Blood samples were drawn to analyze plasma levels of fHb, haptoglobin, and NO consumption prior to transfusion, and 15, 30, 60 and 120 minutes and 24 hours after transfusion. Differences were compared using Pearson's chi-square test or Fisher's exact test for dichotomous variables, or an independent-sample t test or Mann-Whitney U test for continuous data. Continuous, multiple-timepoint data were analyzed using repeated one-way analysis of variance or the Kruskall-Wallis test. Correlations were analyzed using Spearman or Pearson correlation. Results: Storage duration correlated significantly with fHb concentrations and NO consumption within the storage medium (r = 0.51, P < 0.001 and r = 0.62, P = 0.002). fHb also significantly correlated with NO consumption directly (r = 0.61, P = 0.002). Transfusion of 2 RBC units significantly increased circulating fHb and NO consumption in the recipient (P < 0.001 and P < 0.05, respectively), in contrast to transfusion of 1 stored RBC unit. Storage duration of the blood products did not correlate with changes in fHb and NO consumption in the recipient. In contrast, pre-transfusion recipient plasma haptoglobin levels inversely influenced post-transfusion fHb concentrations. Conclusion: These data suggest that RBC transfusion can significantly increase post-transfusion plasma fHb levels and plasma NO consumption in the recipient. This finding may contribute to the potential pathophysiological mechanism underlying the much-discussed adverse relation between blood transfusions and patient outcome. This observation may be of particular importance for patients with substantial transfusion requirements.
Resumo:
Human T-cell lymphotropic virus type 1 (HTLV-1) is-an RNA virus responsible for diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATL). Cell-to-cell contact and Tax-induced clonal expansion of infected cells are the main modes of virus replication, making virus detection during the viremic stage difficult. Consequently, the proviral load is the current virologic marker for disease monitoring, but the mechanisms of progression have not been established yet. Thus, this study investigated the presence of virus in plasma from asymptomatic HTLV-1 carriers and from HAM/TSP patients. Real-time PCR was performed on DNA from 150 plasma samples; 12(8%) had detectable DNA amplification, including 6(4%) asymptomatic HTLV-1 carriers and 14(26%) HAM/TSP patients (p < 0.005). Of the 33 samples submitted for nested PCR, six (18%, p = 0.02) were positive for HTLV-1 RNA in the plasma. Additionally, 26 plasma samples were treated with DNAse enzyme to eliminate any DNA contamination before RNA extraction. Two of them (8%) showed amplification for HTLV-1 (p = 0.5). Therefore, this study described for the first time the detection of free HTLV-1 RNA in plasma from HTLV-1-infected subjects, regardless of their clinical status. Thus, HTLV-1 viral replication does occur in plasma, and other transmission pathways for HTLV-1 should be investigated further. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion'', with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Resumo:
Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.
Resumo:
Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.