28 resultados para NADPH
Resumo:
Aims: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human beta-cell function were investigated. Main methods and key findings: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)). Immunohistochemistry experiments showed co-localization of p47(PHOX), p67(PHOX) and gp91(PHOX) (isoform 2 of NADPH oxidase-NOX2) with insulin secreting cells. Inhibition of NADPH oxidase activity impaired glucose metabolism and glucose-stimulated insulin secretion. Significance: These findings demonstrate the presence of the main intrinsic components of NADPH oxidase comprising the NOX2 isoform in human pancreatic islets, whose activity also contributes to human beta-cell function. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Resumo:
NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.
Resumo:
Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
(NO)-N-center dot is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-gamma and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (NO)-N-center dot in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.
Resumo:
Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement
Resumo:
Abstract Background The present study was conducted to determine the location, the morphology and distribution of NADPH-diaphorase positive neurons in the cardiac nerve plexus of the atria of mice (ASn). This plexus lies over the muscular layer of the atria, dorsal to the muscle itself, in the connective tissue of the subepicardium. NADPH- diaphorase staining was performed on whole-mount preparations of the atria mice. For descriptive purposes, all data are presented as means ± SEM. Results The majority of the NADPH-diaphorase positive neurons were observed in the ganglia of the plexus. A few single neurons were also observed. The number of NADPH-d positive neurons was 57 ± 4 (ranging from 39 to 79 neurons). The ganglion neurons were located in 3 distinct groups: (1) in the region situated cranial to the pulmonary veins, (2) caudally to the pulmonary veins, and (3) in the atrial groove. The largest group of neurons was located cranially to the pulmonary veins (66.7%). Three morphological types of NADPH-diaphorase neurons could be distinguished on the basis of their shape: unipolar cells, bipolar cells and cells with three processes (multipolar cells). The unipolar neurons predominated (78.9%), whereas the multipolar were encountered less frequently (5,3%). The sizes (area of maximal cell profile) of the neurons ranged from about 90 μm2to about 220 μm2. Morphometrically, the three types of neurons were similar and there were no significant differences in their sizes. The total number of cardiac neurons (obtained by staining the neurons with NADH-diaphorase method) was 530 ± 23. Therefore, the NADPH-diaphorase positive neurons of the heart represent 10% of the number of cardiac neurons stained by NADH. Conclusion The obtained data have shown that the NADPH-d positive neurons in the cardiac plexus of the atria of mice are morphologically different, and therefore, it is possible that the function of the neurons may also be different.
Resumo:
We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction
Resumo:
Diabet. Med. 29, e55e61 (2012) Abstract Aims The CYBA C242T polymorphism has been associated with cardiovascular phenotypes such as hypertension and atherosclerosis, but available data are conflicting. This report investigated the impact of this variant on hypertension and metabolic determinants of cardiovascular risk in a large Brazilian sample. Methods We cross-sectionally evaluated 1856 subjects (826 normotensive subjects and 1030 hypertensive patients) by clinical history, anthropometry, laboratory analysis and genotyping of the CYBA C242T polymorphism. Results Genotype frequencies in the whole population were consistent with the HardyWeinberg equilibrium and genotype distributions were not different between hypertensive and normotensive subjects. Hypertensive patients with the CC genotype presented lower fasting plasma glucose levels (5.9 +/- 0.1 vs. 6.2 +/- 0.1 mmol/l, P = 0.020) and waist circumference (94.5 +/- 0.6 vs. 96.3 +/- 0.6 cm, P = 0.028) than CT + TT ones. Similarly, the prevalence of diabetes mellitus and obesity was also lower in hypertensive patients carrying the CC genotype (16% vs. 21%, P = 0.041; 36% vs. 43%, P = 0.029, respectively). In addition, multiple and logistic regression analysis demonstrated that the CYBA C242T polymorphism was associated with glucose levels, waist circumference, obesity and diabetes mellitus in hypertensive patients independently of potential confounders. Conversely, in normotensive subjects, no significant difference in studied variables was detected between the genotype groups. Conclusions These data suggest that the T allele of the CYBA C242T polymorphism may be used as a marker for adverse metabolic features in Brazilian subjects with systemic hypertension.
Resumo:
The onset and early course of schizophrenia is associated with subtle loss of grey matter which may be responsible for the evolution and persistence of symptoms such as apathy, emotional blunting, and social withdrawal. Such 'negative' symptoms are unaffected by current antipsychotic therapies. There is evidence that the antibiotic minocycline has neuroprotective properties. We investigated whether the addition of minocycline to treatment as usual (TAU) for 1 year in early psychosis would reduce negative symptoms compared with placebo. In total, 144 participants within 5 years of first onset in Brazil and Pakistan were randomised to receive TAU plus placebo or minocycline. The primary outcome measures were the negative and positive syndrome ratings using the Positive and Negative Syndrome Scale. Some 94 patients completed the trial. The mean improvement in negative symptoms for the minocycline group was 9.2 and in the placebo group 4.7, an adjusted difference of 3.53 (s.e. 1.01) 95% CI: 1.55, 5.51; p < 0.001 in the intention-to-treat population. The effect was present in both countries. The addition of minocycline to TAU early in the course of schizophrenia predominantly improves negative symptoms. Whether this is mediated by neuroprotective, anti-inflammatory or others actions is under investigation.
Resumo:
Implementing precise techniques in routine diagnosis of chronic granulomatous disease (CGD), which expedite the screening of molecular defects, may be critical for a quick assumption of patient prognosis. This study compared the efficacy of single-strand conformation polymorphism analysis (SSCP) and high-performance liquid chromatography under partially denaturing conditions (dHPLC) for screening mutations in CGD patients. We selected 10 male CGD patients with a clinical history of severe recurrent infections and abnormal respiratory burst function. gDNA, mRNA and cDNA samples were prepared by standard methods. CYBB exons were amplified by PCR and screened by SSCP or dHPLC. Abnormal DNA fragments were sequenced to reveal the nature of the mutations. The SSCP and dHPLC methods showed DNA abnormalities, respectively, in 55% and 100% of the cases. Sequencing of the abnormal DNA samples confirmed mutations in all cases. Four novel mutations in CYBB were identified which were picked up only by the dHPLC screening (c.904 insC, c.141+5 g>t, c.553 T>C, and c.665 A>T). This work highlights the relevance of dHPLC, a sensitive, fast, reliable and cost-effective method for screening mutations in CGD, which in combination with functional assays assessing the phagocyte respiratory burst will contribute to expedite the definitive diagnosis of X-linked CGD, direct treatment, genetic counselling and to have a clear assumption of the prognosis. This strategy is especially suitable for developing countries.
Resumo:
Our data suggest that impaired activity of myeloperoxidase (MPO) may play an important role in the dysfunction of neutrophils from hyperglycemic rats. Neutrophil biochemical pathways include the NADPH oxidase system and the MPO enzyme. They both play important role in the killing function of neutrophils. The effect of hyperglycemia on the activity of these enzymes and the consequences with regard to Candida albicans phagocytosis and the microbicidal property of rat peritoneal neutrophils is evaluated here. The NADPH oxidase system activity was measured using chemiluminescence and cytochrome C reduction assays. MPO activity was measured by monitoring HOCl production, and MPO protein expression was analysed using Western blot and immunofluorescence. C. albicans phagocytosis and death were evaluated by optical microscopy using the MayGrunwaldGiemsa staining method. ROS generation kinetic was slightly delayed in the diabetic group. MPO expression levels were higher in diabetic neutrophils; however, MPO activity was decreased in these same neutrophils compared with the controls. C. albicans phagocytosis and killing were lower in the diabetic neutrophils. Based on our experimental model, the phagocytic and killing functions of neutrophil phagocytosis are impaired in diabetic rats because of the decreased production of HOCl, highlighting the importance of MPO in the microbicidal function of neutrophils. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Increased vascular matrix metalloproteinases (MMPs) levels play a role in late phases of hypertensive vascular remodeling. However, no previous study has examined the time course of MMPs in the various phases of two-kidney, one-clip hypertension (2K1C). We examined structural vascular changes, collagen and elastin content, vascular oxidative stress, and MMPs levels/activities during the development of 2K1C hypertension. Plasma angiotensin converting enzyme (ACE) activity was measured to assess renin-angiotensin system activation. Sham or 2K1C hypertensive rats were studied after 2, 4, 6, and 10 weeks of hypertension. Systolic blood pressure (SBP) was monitored weekly. Morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin, orcein and picrosirius red sections. Aortic NADPH activity and superoxide production was evaluated. Aortic gelatinolytic activity was determined by in situ zymography, and MMP-2, MMP-14, and tissue inhibitor of MMPs (TIMP)-2 levels were determined by gelatin zymography, immunofluorescence and immunohistochemistry. 2K1C hypertension was associated with increased ACE activity, which decreased to normal after 10 weeks. We found increased aortic collagen and elastin content in the early phase of hypertension, which were associated with vascular hypertrophy, increased vascular MMP-2 and MMP-14 (but not TIMP-2) levels, and increased gelatinolytic activity, possibly as a result of increased vascular NADPH oxidase activity and oxidative stress. These results indicate that vascular remodeling of renovascular hypertension is an early process associated with early increases in MMPs activities, enhanced matrix deposition and oxidative stress. Using antioxidants or MMPs inhibitors in the early phase of hypertension may prevent the vascular alterations of hypertension. (C) 2012 Elsevier B.V. All rights reserved.