71 resultados para Adoptive T-cell Therapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic Obstructive Pulmonary Disease (COPD) can be briefly described as air flow limitation and chronic dyspnea associated to an inflammatory response of the respiratory tract to noxious particles and gases. Its main feature is the obstruction of airflow and consequent chronic dyspnea. Despite recent advances, and the development of new therapeutic, medical and clinical approaches, a curative therapy is yet to be achieved. Therapies involving the use of tissue-specific or donor derived cells present a promising alternative in the treatment of degenerative diseases and injuries. Recent studies demonstrate that mesenchymal stem cells have the capacity to modulate immune responses in acute lung injury and pulmonary fibrosis in animal models, as well as in human patients. Due to these aspects, different groups raised the possibility that the stem cells from different sources, such as those found in bone marrow or adipose tissue, could act preventing the emphysematous lesion progression. In this paper, it is proposed a review of the current state of the art and future perspectives on the use of cell therapy in obstructive lung diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that bone marrow-derived mononuclear cell (BMDMC) therapy protects the lung and consequently the heart in experimental elastase-induced emphysema. Twenty-four female C57BL/6 mice were intratracheally instilled with saline (C group) or porcine pancreatic elastase (E group) once a week during 4 weeks. C and E groups were randomized into subgroups receiving saline (SAL) or male BMDMCs (2 x 10(6), CELL) intravenously 3 h after the first saline or elastase instillation. Compared to E-SAL group, E-CELL mice showed, at 5 weeks: lower mean linear intercept, neutrophil infiltration, elastolysis, collagen fiber deposition in alveolar septa and pulmonary vessel wall, lung cell apoptosis, right ventricle wall thickness and area, higher endothelial growth factor and insulin-like growth factor mRNA expressions in lung tissue, and reduced platelet-derived growth factor, transforming growth factor-beta, and caspase-3 expressions. In conclusion, BMDMC therapy was effective at modulating the inflammatory and remodeling processes in the present model of elastase-induced emphysema. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to show histological and immunofluorescence analysis of renal parenchyma of agoutis affected by gentamicin-induced renal disease after the infusion of bone marrow mononuclear cells (BMMC) stained with Hoechst (R). Nine agouti's males were divided into three groups: Test group (TG): renal disease by gentamicin induced (n = 3), cell therapy group (CTG): renal disease by gentamicin induced and BMMC infusion (n = 3), and control group (CG): nonrenal disease and BMMC infusion (n = 3). TG and CTG were submitted to the protocol of renal disease induction using weekly application of gentamicin sulfate for 4 months. CG and CTG received a 1 X 108 BMMC stained with Hoechst and were euthanized for kidney examination 21 days after BMMC injection and samples were collected for histology and immunofluorescence analysis. Histological analysis demonstrated typical interstitial lesions in kidney similarly to human disease, as tubular necrosis, glomerular destruction, atrophy tubular, fibrotic areas, and collagen deposition. We conclude that histological analysis suggest a positive application of agouti's as a model for a gentamicin inducing of kidney disease, beyond the immunofluorescence analysis suggest a significant migration of BMMC to sites of renal injury in CTG. Microsc. Res. Tech., 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Cardiovascular diseases are the major cause of death in the world. Current treatments have not been able to reverse this scenario, creating the need for the development of new therapies. Cell therapies have emerged as an alternative for cardiac diseases of distinct causes in experimental animal studies and more recently in clinical trials. Method/Design: We have designed clinical trials to test for the efficacy of autologous bone marrow derived mononuclear cell therapies in four different cardiopathies: acute and chronic ischemic heart disease, and Chagasic and dilated cardiomyopathy. All trials are multicenter, randomized, double-blind and placebo controlled. In each trial 300 patients will be enrolled and receive optimized therapy for their specific condition. Additionally, half of the patients will receive the autologous bone marrow cells while the other half will receive placebo (saline with 5% autologous serum). For each trial there are specific inclusion and exclusion criteria and the method for cell delivery is intramyocardial for the chronic ischemic heart disease and intracoronary for all others. Primary endpoint for all studies will be the difference in ejection fraction (determined by Simpson's rule) six and twelve months after intervention in relation to the basal ejection fraction. The main hypothesis of this study is that the patients who receive the autologous bone-marrow stem cell implant will have after a 6 month follow-up a mean increase of 5% in absolute left ventricular ejection fraction in comparison with the control group. Discussion: Many phase I clinical trials using cell therapy for cardiac diseases have already been performed. The few randomized studies have yielded conflicting results, rendering necessary larger well controlled trials to test for efficacy of cell therapies in cardiopathies. The trials registration numbers at the NIH registry are the following: Chagasic cardiomyopathy (NCT00349271), dilated cardiomyopathy (NCT00333827), acute myocardial infarction (NCT00350766) and Chronic Ischemic Heart Disease (NCT00362388).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/objectives: Therapy using bone marrow (BM) cells has been tested experimentally and clinically due to the potential ability to restore cardiac function by regenerating lost myocytes or increasing the survival of tissues at risk after myocardial infarction (MI). In this study we aimed to evaluate whether BM-derived mononuclear cell (MNC) implantation can positively influence the post-MI structural remodeling, contractility and Ca(2 +)-handling proteins of the remote non-infarcted tissue in rats. Methods and results: After 48 h of MI induction, saline or BM-MNC were injected. Six weeks later, MI scars were slightly smaller and thicker, and cardiac dilatation was just partially prevented by cell therapy. However, the cardiac performance under hemodynamic stress was totally preserved in the BM-MNC treated group if compared to the untreated group, associated with normal contractility of remote myocardium as analyzed in vitro. The impaired post-rest potentiation of contractile force, associated with decreased protein expression of the sarcoplasmic reticulum Ca2 +-ATPase and phosphorylated-phospholamban and overexpression of Na(+)/Ca(2 +) exchanger, were prevented by BM-MNC, indicating preservation of the Ca(2 +) handling. Finally, pathological changes on remodeled remote tissue such as myocyte hypertrophy, interstitial fibrosis and capillary rarefaction were also mitigated by cell therapy. Conclusions: BM-MNC therapy was able to prevent cardiac structural and molecular remodeling after MI, avoiding pathological changes on Ca(2 +)-handling proteins and preserving contractile behavior of the viable myocardium, which could be the major contributor to the improvements of global cardiac performance after cell transplantation despite that scar tissue still exists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell therapy is a therapeutic strategy used to replace or repair damaged tissue. The epithelium transplantation of cultivated keratinocytes has been applied to several modalities of reconstruction, like oral, urethra and ocular surface. Life and death signals work coordinately to ensure cellular quality control and the viability of an organism. The aim of this study is to verify that culture conditions did not induce genetic mutations through the analysis of the key genes: pAKT, Pten, p53 and MDM2 and investigate the presence of the related proteins in human oral keratinocytes obtained by primary culture and in vitro cultivated. Formalin fixed and paraffin embedded tissues from the oral cavity were utilized as control for normal expression of the related markers and two oral squamous cell carcinoma cell lines provided the expression pattern of the proposed markers in the event of cellular transformation. Akt, PTEN, p53 and MDM2 immunohistochemistry and Western-Blotting analyzes were performed. The results showed the expression levels and intracellular localizations of the four proteins evaluated. These analyzes confirmed that the produced in vitro epithelium is bio-compatible for its utilization as reconstruction and reparatory tissue, however further analyses and additional research on other biomarkers should be performed to analyse the long term engraftment of transplantable primary culture of oral keratinocytes and the long term resistance to cellular transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have received great attention due to their remarkable regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. Although conventionally isolated from the bone marrow, they are known to exist in all tissues and organs, raising the question on whether they are identical cell populations or have important differences at the molecular level. To better understand the relationship between MSCs residing in different tissues, we analyzed the expression of genes related to pluripotency (SOX2 and OCT-4) and to adipogenic (C/EBP and ADIPOR1), osteogenic (OMD and ALP), and chondrogenic (COL10A1 and TRPV4) differentiation in cultures derived from murine endodermal (lung) and mesodermal (adipose) tissue maintained in different conditions. MSCs were isolated from lungs (L-MSCs) and inguinal adipose tissue (A-MSCs) and cultured in normal conditions, in overconfluence or in inductive medium for osteogenic, adipogenic, or chondrogenic differentiation. Cultures were characterized for morphology, immunophenotype, and by quantitative real-time reverse transcription-polymerase chain reaction for expression of pluripotency genes or markers of differentiation. Bone marrow-derived MSCs were also analyzed for comparison of these parameters. L-MSCs and A-MSCs exhibited the typical morphology, immunophenotype, and proliferation and differentiation pattern of MSCs. The analysis of gene expression showed a higher potential of adipose tissue-derived MSCs toward the osteogenic pathway and of lung-derived MSCs to chondrogenic differentiation, representing an important contribution for the definition of the type of cell to be used in clinical trials of cell therapy and tissue engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, is the most common and severe form of muscular dystrophies, affecting I in 3,500 male births. Mutations in the DMD gene lead to the absence of muscle dystrophin and a progressive degeneration of skeletal muscle. The possibility to treat DMD through cell therapy has been widely investigated. We have previously shown that human adipose-derived stromal cells (hASCs) injected systemically in SJL mice are able to reach and engraft in the host muscle, express human muscle proteins, and ameliorate the functional performance of injected animals without any immunosuppression. However, before starting clinical trials in humans many questions still need to be addressed in preclinical studies, in particular in larger animal models, when available. The best animal model to address these questions is the golden retriever muscular dystrophy (GRMD) dog that reproduces the full spectrum of human DMD. Affected animals carry a mutation that predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. These dogs present clinical signs within the first weeks and most of them do not survive beyond age two. Here we show the results of local and intravenous injections of hASCs into GRMD dogs, without immunosuppression. We observed that hASCs injected systemically into the dog cephalic vein are able to reach, engraft, and express human dystrophin in the host GRMD dystrophic muscle up to 6 months after transplantation. Most importantly, we demonstrated that injecting a huge quantity of human mesenchymal cells in a large-animal model, without immunosuppression, is a safe procedure, which may have important applications for future therapy in patients with different forms of muscular dystrophies.