3 resultados para Existence and Uniqueness Theory
em Biblioteca de Teses e Dissertações da USP
Resumo:
Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.
Resumo:
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais.
Resumo:
In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach.