44 resultados para sodium glucose co-transporter 2 inhibitors

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Inhibitors of the sodium-glucose co-transporter 2 (SGLT2) promote the excretion of glucose to reduce glycated hemoglobin (HbA1c) levels. Canagliflozin was the first SGLT2 inhibitor to be approved by the US FDA for use in the treatment of type 2 diabetes, and recently dapagliflozin has also been approved. AREAS COVERED: We evaluated a recent Phase III clinical trial with dapagliflozin. EXPERT OPINION: Dapagliflozin was studied as add-on therapy to sitagliptin with or without metformin, and was shown to lower HbA1c levels and body weight. The incidence of hypoglycaemia was low with dapagliflozin, but it did increase the incidence of urogenital infections. As no clear benefits have been identified for dapagliflozin over canagliflozin, which was the first gliflozin registered by the FDA, we do not fully understand why it was necessary to register dapagliflozin. Given that there are no completed cardiovascular/clinical outcome studies with dapagliflozin, and therefore no evidence of beneficial effect, it also seems premature to be using it extensively or considering it as an alternative to the clinically proven metformin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound catena-poly[aqua-mu3-2-nitrocinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitrocinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octahedral NaO6 centres comprising three facially-related monodentate carboxylate O-atom donors from separate ligands (all bridging)[Na-O, 2.4370(13)-2.5046(13)A] and three water molecules (two bridging, one monodentate) [Na-O, 2.3782(13)-2.4404(17)A]. The structure is also stabilized by intra-chain water-O-H...O(carboxylate) and O-H...O(nitro) hydrogen bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab 2013. [Epub ahead of print] and Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomized, double-blind, phase 3 non-inferiority trial. Lancet 2013;382:941-50 INTRODUCTION Inhibition of the sodium-glucose cotransporter 2 (SGLT2), to promote the excretion of glucose, is a new paradigm in the treatment of type 2 diabetes. AREAS COVERED Canagliflozin is an SGLT2 inhibitor, which has been the subject of two recent clinical trials, which are evaluated. EXPERT OPINION Studies with canagliflozin, in subjects with type 2 diabetes, have shown that its use is associated with reductions in HbA1c and body weight and small reductions in blood pressure and triglycerides, while increasing high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. As monotherapy in Japanese subjects, or in comparison with glimepiride in CANTATA-SU (CANagliflozin Treatment and Trial Analysis versus SUlphonylurea), canagliflozin causes a low incidence of hypoglycemia, and this is an advantage over glimepiride. However, one of the disadvantages with canagliflozin, which was also highlighted in CANTATA-SU, is that canagliflozin can cause urogenital infections, which are not observed with other antidiabetic drugs. The Federal Drug Administration has recently approved canagliflozin for use in type 2 diabetes, while directing that a clinical outcome safety trial be undertaken. We are concerned that canagliflozin has been approved for use in type 2 diabetes prior to a clinical outcome study of efficacy being undertaken and without the outcome of further safety testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction In 2008, the Federal Drug Administration (FDA) required all new glucose-lowering therapies to show cardiovascular safety, and this applies to the dipeptidyl peptidase (DPP)-4 inhibitors (‘gliptins’). At present, there is contradictory evidence on whether the gliptins increase hospitalizations for heart failure. Areas covered This is an evaluation of the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in high risk cardiovascular subjects with type 2 diabetes [1]. TECOS demonstrated non-inferiority for sitagliptin over placebo for the primary outcome, which was cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. There was no difference in the rate of hospitalization for heart failure between sitagliptin and placebo. Expert Opinion Despite the results of TECOS, debate over the effects of sitagliptin on the rates of hospitalizations for heart failure continues with some recent studies suggesting increased rates. Recently, empagliflozin (an inhibitor of sodium-glucose cotransporter 2) has been shown to reduce cardiovascular outcomes in subjects with type 2 diabetes, including the rates of hospitalization for heart failure. In our opinion, these positive findings with empagliflozin suggest that it should be prescribed in preference to the gliptins, including sitagliptin, unless any positive cardiovascular outcomes are reported for the gliptins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common genetically linked neurovascular disorder. Approximately ~12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ~3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through simple soft chemistry. The cobalt hydroxide displays hexagonal morphology with clear edges 20 nm long. This morphology and nanosize is retained through to cobalt oxide Co3O4 through a topotactical relationship. Cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through oxidation and low temperature calcination from the as-prepared cobalt hydroxide. Characterisation of these cobalt-based nanomaterials were fully developed, including X-ray diffraction, transmission electron microscopy combined with selected area electron diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Bonding of the divalent cobalt hydroxide from the oxyhydroxide and oxides by studying their high resolution XPS spectra for Co 2p3/2 and O 1s. Raman spectroscopy of the as-prepared Co(OH)2, CoO(OH) and Co3O4 nanomaterials characterised each material. The thermal stability of the materials Co(OH)2 and CoO(OH) were established. This research has developed methodology for the synthesis of cobalt oxide and cobalt oxyhydroxide nanodiscs at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Socio-economic gradients in cardiovascular disease (CVD) and diabetes have been found throughout the developed world and there is some evidence to suggest that these gradients may be steeper for women. Research on social gradients in biological risk factors for CVD and diabetes has received less attention and we do not know the extent to which gradients in biomarkers vary for men and women. We examined the associations between two indicators of socio-economic position (education and household income) and biomarkers of diabetes and cardiovascular disease (CVD) for men and women in a national, population-based study of 11,247 Australian adults. Multi-level linear regression was used to assess associations between education and income and glucose tolerance, dyslipidaemia, blood pressure (BP) and waist circumference before and after adjustment for behaviours (diet, smoking, physical activity, TV viewing time, and alcohol use). Measures of glucose tolerance included fasting plasma glucose and insulin and the results of a glucose tolerance test (2 h glucose) with higher levels of each indicating poorer glucose tolerance. Triglycerides and High Density Lipoprotein (HDL) Cholesterol were used as measures of dyslipidaemia with higher levels of the former and lower levels of the later being associated with CVD risk. Lower education and low income were associated with higher levels of fasting insulin, triglycerides and waist circumference in women. Women with low education had higher systolic and diastolic BP and low income women had higher 2 h glucose and lower HDL cholesterol. With only one exception (low income and systolic BP), all of these estimates were reduced by more than 20% when behavioural risk factors were included. Men with lower education had higher fasting plasma glucose, 2 h glucose, waist circumference and systolic BP and, with the exception of waist circumference, all of these estimates were reduced when health behaviours were included in the models. While low income was associated with higher levels of 2-h glucose and triglycerides it was also associated with better biomarker profiles including lower insulin, waist circumference and diastolic BP. We conclude that low socio-economic position is more consistently associated with a worse profile of biomarkers for CVD and diabetes for women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochars produced by slow pyrolysis of greenwaste (GW), poultry litter (PL), papermill waste (PS), and biosolids (BS) were shown to reduce N2O emissions from an acidic Ferrosol. Similar reductions were observed for the untreated GW feedstock. Soil was amended with biochar or feedstock giving application rates of 1 and 5%. Following an initial incubation, nitrogen (N) was added at 165 kg/ha as urea. Microcosms were again incubated before being brought to 100% water-filled porosity and held at this water content for a further 47 days. The flooding phase accounted for the majority (<80%) of total N2O emissions. The control soil released 3165 mg N2O-N/m2, or 15.1% of the available N as N2O. Amendment with 1 and 5% GW feedstock significantly reduced emissions to 1470 and 636 mg N2O-N/m2, respectively. This was equivalent to 8.6 and 3.8% of applied N. The GW biochar produced at 350°C was least effective in reducing emissions, resulting in 1625 and 1705 mg N2O-N/m2 for 1 and 5% amendments. Amendment with BS biochar at 5% had the greatest impact, reducing emissions to 518 mg N2O-N/m2, or 2.2% of the applied N over the incubation period. Metabolic activity as measured by CO2 production could not explain the differences in N2O emissions between controls and amendments, nor could NH4+ or NO3 concentrations in biochar-amended soils. A decrease in NH4+ and NO3 following GW feedstock application is likely to have been responsible for reducing N2O emissions from this amendment. Reduction in N2O emissions from the biochar-amended soils was attributed to increased adsorption of NO3. Small reductions are possible due to improved aeration and porosity leading to lower levels of denitrification and N2O emissions. Alternatively, increased pH was observed, which can drive denitrification through to dinitrogen during soil flooding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

10.1 Histamine and cytokines 10.1.1 Actions of histamine 10.1.2 Drugs that modify the actions of histamine 10.1.3 Cytokines 10.2 Eicosanoids 10.2.1 Cyclooxygenase (COX) and lipooxygenase system 10.2.2 Actions of eicosanoids 10.2.3 Drugs that modify the actions of eicosanoids 10.2.3.1 Inhibit phospholipase A2 10.2.3.2 Non-selective cyclooxygenase inhibitors 10.2.3.3 Selective COX-2 inhibitors 10.2.3.4 Agonists at prostaglandin receptors 10.2.3.5 Leukotriene receptor antagonists 10.3. 5-Hydroxtryptamine (serotonin), nitric oxide, and endothelin 10.3.1 5-HT and migraine 10.3.2 5-HT and the gastrointestinal tract 10.3.3 Nitric oxide and angina 10.3.4 Nitric oxide and erectile dysfunction 10.3.5 Endothelin and pulmonary hypertension