271 resultados para nonequilibrium field dynamics
em Queensland University of Technology - ePrints Archive
Resumo:
We reported the thermal conductivity of the two-dimensional carbon nanotube (CNT)-based architecture, which can be constructed through welding of single-wall CNTs by electron beam. Using large-scale nonequilibrium molecular dynamics simulations, the thermal conductivity is found to vary with different junction types due to their different phonon scatterings at the junction. The strong length and strain dependence of the thermal conductivity suggests an effective avenue to tune the thermal transport properties of the CNT-based architecture, benefiting the design of nanoscale thermal rectifiers or phonon engineering.
Resumo:
The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.
Resumo:
This is the sixth part of a Letter from the Editor series where the results are presented of an ongoing research undertaken in order to investigate the dynamic of the evolution of the field of project management and the key trends. Dynamics of networks is a key feature in strategic diagrams analysis. The radical change in the configuration of a network between two periods, or the change at subnetwork level reflects the dynamic of science. I present here an example of subnetwork comparison over the four periods of time considered in this study. I will develop and discuss an example of subnetwork transformation in future Letter from the Editor article..
Resumo:
This is the fifth part of a Letter From the Editor series where the results are presented of an ongoing research undertaken in order to investigate the dynamic of the evolution of the field of project management and the key trends. I present some general findings and the strategic diagrams generated for each of the time periods introduced herein and discuss what we can learn from them on a general standpoint. I will develop and discuss some detailed findings in future Letter From the Editor articles...
Resumo:
Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.
Resumo:
Principal Topic In this paper we seek to highlight the important intermediate role that the gestation process plays in entrepreneurship by examining its key antecedents and its consequences for new venture emergence. In doing so we take a behavioural perspective and argue that it is not only what a nascent venture is, but what it does (Katz & Gartner, 1988; Shane & Delmar, 2004; Reynolds, 2007) and when it does it during start-up (Reynolds & Miller, 1992; Lichtenstein, Carter, Dooley & Gartner, 2007) that is important. To extend an analogy from biological development, what we suggest is that the way a new venture is nurtured is just as fundamental as its nature. Much prior research has focused on the nature of new ventures and attempted to attribute variations in outcomes directly to the impact resource endowments and investments have. While there is little doubt that venture resource attributes such as human capital, and specifically prior entrepreneurial experience (Alsos & Kolvereid, 1998), access to social (Davidsson & Honig, 2003) and financial capital have an influence. Resource attributes themselves are distal from successful start-up endeavours and remain inanimate if not for the actions of the nascent venture. The key contribution we make is to shift focus from whether or not actions are taken, but when these actions happen and how that is situated in the overall gestation process. Thus, we suggest that it is gestation process dynamics, or when gestation actions occur, that is more proximal to venture outcomes and we focus on this. Recently scholars have highlighted the complexity that exists in the start-up or gestation process, be it temporal or contextual (Liao, Welsch & Tan, 2005; Lichtenstein et al. 2007). There is great variation in how long a start-up process might take (Reynolds & Miller, 1992), some processes require less action than others (Carter, Gartner & Reynolds, 1996), and the overall intensity of the start-up effort is also deemed important (Reynolds, 2007). And, despite some evidence that particular activities are more influential than others (Delmar & Shane, 2003), the order in which events may happen is, until now, largely indeterminate as regard its influence on success (Liao & Welsch, 2008). We suggest that it is this complexity of the intervening gestation process that attenuates the effect of resource endowment and has resulted in mixed findings in previous research. Thus, in order to reduce complexity we shall take a holistic view of the gestation process and argue that it is its’ dynamic properties that determine nascent venture attempt outcomes. Importantly, we acknowledge that particular gestation processes of themselves would not guarantee successful start-up, but it is more correctly the fit between the process dynamics and the ventures attributes (Davidsson, 2005) that is influential. So we aim to examine process dynamics by comparing sub-groups of venture types by resource attributes. Thus, as an initial step toward unpacking the complexity of the gestation process, this paper aims to establish the importance of its role as an intermediary between attributes of the nascent venture and the emergence of that venture. Here, we make a contribution by empirically examining gestation process dynamics and their fit with venture attributes. We do this by firstly, examining that nature of the influence that venture attributes such as human and social capital have on the dynamics of the gestation process, and secondly by investigating the effect that gestation process dynamics have on venture creation outcomes. Methodology and Propositions In order to explore the importance that gestation processes dynamics have in nascent entrepreneurship we conduct an empirical study of ventures start-ups. Data is drawn from a screened random sample of 625 Australian nascent business ventures prior to them achieving consistent outcomes in the market. This data was collected during 2007/8 and 2008/9 as part of the Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) project (Davidsson et al., 2008). CAUSEE is a longitudinal panel study conducted over four years, sourcing information from annually administered telephone surveys. Importantly for our study, this methodology allows for the capture and tracking of active nascent venture creation as it happens, thus reducing hindsight and selection biases. In addition, improved tests of causality may be made given that outcome measures are temporally removed from preceding events. The data analysed in this paper represents the first two of these four years, and for the first time has access to follow-up outcome measures for these venture attempts: where 260 were successful, 126 were abandoned, and 191 are still in progress. With regards to venture attributes as gestation process antecedents, we examine specific human capital measured as successful prior experience in entrepreneurship, and direct social capital of the venture as ‘team start-ups’. In assessing gestation process dynamics we follow Lichtenstein et al. (2007) to suggest that the rate, concentration and timing of gestation activities may be used to summarise the complexity dynamics of that process. In addition, we extend this set of measures to include the interaction of discovery and exploitation by way of changes made to the venture idea. Those ventures with successful prior experience or those who conduct symbiotic parallel start-up attempts may be able to, or be forced to, leave their gestation action until later and still derive a successful outcome. In addition access to direct social capital may provide the support upon which the venture may draw in order to persevere in the face of adversity, turning a seemingly futile start-up attempt into a success. On the other hand prior experience may engender the foresight to terminate a venture attempt early should it be seen to be going nowhere. The temporal nature of these conjectures highlight the importance that process dynamics play and will be examined in this research Statistical models are developed to examine gestation process dynamics. We use multivariate general linear modelling to analyse how human and social capital factors influence gestation process dynamics. In turn, we use event history models and stratified Cox regression to assess the influence that gestation process dynamics have on venture outcomes. Results and Implications What entrepreneurs do is of interest to both scholars and practitioners’ alike. Thus the results of this research are important since they focus on nascent behaviour and its outcomes. While venture attributes themselves may be influential this is of little actionable assistance to practitioners. For example it is unhelpful to say to the prospective first time entrepreneur “you’ll be more successful if you have lots of prior experience in firm start-ups”. This research attempts to close this relevance gap by addressing what gestation behaviours might be appropriate, when actions best be focused, and most importantly in what circumstances. Further, we make a contribution to the entrepreneurship literature, examining the role that gestation process dynamics play in outcomes, by specifically attributing these to the nature of the venture itself. This extension is to the best of our knowledge new to the research field.
Resumo:
Increasingly it has been argued that senior management teams (SMTs), comprising principals, deputy heads and other personnel, play a critical role in the governance of schools. In recent years, many researchers have drawn upon the tools of micropolitics to illuminate the relationships, dynamics and power plays between and amongst members of SMTs. The paper has two foci. Firstly, it overviews some of the seminal literature in the field of SMTs and micropolitics in an attempt to identify the working practices of and challenges facing members of SMTs. Secondly, it discusses an instrument, the TEAM Development Questionnaire, that emerged from a synthesis of this writing and research. The questionnaire presented here was especially devised to use with members of SMTs to help them (i) identify the dynamics amongst team members; and (ii) identify areas for the team to improve. A set of procedures for implementing the TEAM Development Questionnaire is provided to demonstrate its application to the field.
Resumo:
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
This paper analyzes effects of different practice task constraints on heart rate (HR) variability during 4v4 smallsided football games. Participants were sixteen football players divided into two age groups (U13, Mean age: 12.4±0.5 yrs; U15: 14.6±0.5). The task consisted of a 4v4 sub-phase without goalkeepers, on a 25x15 m field, of 15 minutes duration with an active recovery period of 6 minutes between each condition. We recorded players’ heart rates using heart rate monitors (Polar Team System, Polar Electro, Kempele, Finland) as scoring mode was manipulated (line goal: scoring by dribbling past an extended line; double goal: scoring in either of two lateral goals; and central goal: scoring only in one goal). Subsequently, %HR reserve was calculated with the Karvonen formula. We performed a time-series analysis of HR for each individual in each condition. Mean data for intra-participant variability showed that autocorrelation function was associated with more short-range dependence processes in the “line goal” condition, compared to other conditions, demonstrating that the “line goal” constraint induced more randomness in HR response. Relative to inter-individual variability, line goal constraints demonstrated lower %CV and %RMSD (U13: 9% and 19%; U15: 10% and 19%) compared with double goal (U13: 12% and 21%; U15: 12% and 21%) and central goal (U13: 14% and 24%; U15: 13% and 24%) task constraints, respectively. Results suggested that line goal constraints imposed more randomness on cardiovascular stimulation of each individual and lower inter-individual variability than double goal and central goal constraints.
Dynamics of attacker–defender dyads in Association Football : parameters influencing decision-making
Resumo:
Previous work on pattern-forming dynamics of team sports has investigated sub-phases of basketball and rugby union by focussing on one-versus-one (1v1) attacker-defender dyads. This body of work has identified the role of candidate control parameters, interpersonal distance and relative velocity, in predicting the outcomes of team player interactions. These two control parameters have been described as functioning in a nested relationship where relative velocity between players comes to the fore within a critical range of interpersonal distance. The critical influence of constraints on the intentionality of player behaviour has also been identified through the study of 1v1 attacker-defender dyads. This thesis draws from previous work adopting an ecological dynamics approach, which encompasses both Dynamical Systems Theory and Ecological Psychology concepts, to describe attacker-defender interactions in 1v1 dyads in association football. Twelve male youth association football players (average age 15.3 ± 0.5 yrs) performed as both attackers and defenders in 1v1 dyads in three field positions in an experimental manipulation of the proximity to goal and the role of players. Player and ball motion was tracked using TACTO 8.0 software (Fernandes & Caixinha, 2003) to produce two-dimensional (2D) trajectories of players and the ball on the ground. Significant differences were found for player-to-ball interactions depending on proximity to goal manipulations, indicating how key reference points in the environment such as the location of the goal may act as a constraint that shapes decision-making behaviour. Results also revealed that interpersonal distance and relative velocity alone were insufficient for accurately predicting the outcome of a dyad in association football. Instead, combined values of interpersonal distance, ball-to-defender distance, attacker-to-ball distance, attacker-to-ball relative velocity and relative angles were found to indicate the state of dyad outcomes.
Resumo:
Focusing on the role within and between organizations of the project management discipline to design and implement strategy, as source of competitive advantage, leads us to question the scientific field behind this discipline. This science should be the basis for the development and use of bodies of knowledge, standards, certification programs, education, and competencies, and beyond this as a source of value for people, organizations, and society. Thus the importance to characterize, define, and understand this field and its underlying strength, basis, and development is paramount. For this purpose we propose to give some insights on the current situation. This will lead us to clarify our epistemological position and demonstrate that both constructivism and positivist approaches are required to seize the full dimension and dynamics of the field.We will referee to sociology of actor-networks and qualitative scientometrics leading to the choice of the co-word analysis method in enabling us to capture the project management field and its dynamics.Results of a study based on the analysis of ABI Inform database will be presented and some future trends and scenarios proposed.