222 resultados para narrative matrix
em Queensland University of Technology - ePrints Archive
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.
Resumo:
Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93.
Resumo:
This paper is a detailed case narrative on how a Faculty of a leading Australian University conducted a rigorous process improvement project, applying fundamental Business Process Management (BPM) concepts. The key goal was to increase the efficiency of the faculty’s service desk. The decrease of available funds due to reducing student numbers and the ever increasing costs associated with service desk prompted this project. The outcomes of the project presented a set of recommendations which leads to organizational innovation having information technology as an enabler for change. The target audience includes general BPM practitioners or academics who are interested in BPM related case studies, and specific organisations who might be interested in conducting BPM within their service desk processes.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
The ideas for this CRC research project are based directly on Sidwell, Kennedy and Chan (2002). That research examined a number of case studies to identify the characteristics of successful projects. The findings were used to construct a matrix of best practice project delivery strategies. The purpose of this literature review is to test the decision matrix against established theory and best practice in the subject of construction project management.
Resumo:
The Co-operative Research Centre for Construction Innovation (CRC-CI) is funding a project known as Value Alignment Process for Project Delivery. The project consists of a study of best practice project delivery and the development of a suite of products, resources and services to guide project teams towards the best procurement approach for a specific project or group of projects. These resources will be focused on promoting the principles that underlie best practice project delivery rather than simply identifying an off-the-shelf procurement system. This project builds on earlier work by Sidwell, Kennedy and Chan (2002), on re-engineering the construction delivery process, which developed a procurement framework in the form of a Decision Matrix
Resumo:
The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from “realtime” case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
I am a landscape architect, a non-photographer, and in reviewing this exhibition, it seems that in a critical discourse on photography the nature of the view and its relation to the observer (presumably the camera) is inevitably a key focus of creative inquiry, in an epistemological sense. In conducting such a review, of 'self-portraits' by 'female photographers' in relation to 'the landscape', one cannot help but ask what priority this critique should allocate to each of these conceptual agendas, quite apart from the simple formal quality of the individual pieces themselves. Analytically, each could form the axes of a matrix that might allow for a number of quite different permutations and therefore differently conclusive commentaries on the others: the view vs landscape; the view vs sexuality; the self-portrait vs the landscape picture. All of these would be productive in their own right and each is alluded to in the works themselves and in the narrative of the catalogue. Considering this range of possible permutations, this show is certainly rich and this richness sits well with the relative formal saturation of the images themselves.