46 resultados para migration of rhizobia
em Queensland University of Technology - ePrints Archive
Resumo:
We study MCF-7 breast cancer cell movement in a transwell apparatus. Various experimental conditions lead to a variety of monotone and nonmonotone responses which are difficult to interpret. We anticipate that the experimental results could be caused by cell-to-cell adhesion or volume exclusion. Without any modeling, it is impossible to understand the relative roles played by these two mechanisms. A lattice-based exclusion process random-walk model incorporating agent-to-agent adhesion is applied to the experimental system. Our combined experimental and modeling approach shows that a low value of cell-to-cell adhesion strength provides the best explanation of the experimental data suggesting that volume exclusion plays a more important role than cell-to-cell adhesion. This combined experimental and modeling study gives insight into the cell-level details and design of transwell assays.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.
Resumo:
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
This qualitative study investigated the drivers and determinants of irregular maritime migration among 17 protection visa holders who arrived in Australia as unaccompanied asylum-seeking minors. Semi-structured interviews were also conducted with eight non-government service providers working with unaccompanied minors in the Greater Brisbane area.
Resumo:
Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.
Resumo:
The adhesion molecule L1, which is extensively characterized in the nervous system, is also expressed in dendritic cells (DCs), but its function there has remained elusive. To address this issue, we ablated L1 expression in DCs of conditional knockout mice. L1-deficient DCs were impaired in adhesion to and transmigration through monolayers of either lymphatic or blood vessel endothelial cells, implicating L1 in transendothelial migration of DCs. In agreement with these findings, L1 was expressed in cutaneous DCs that migrated to draining lymph nodes, and its ablation reduced DC trafficking in vivo. Within the skin, L1 was found in Langerhans cells but not in dermal DCs, and L1 deficiency impaired Langerhans cell migration. Under inflammatory conditions, L1 also became expressed in vascular endothelium and enhanced transmigration of DCs, likely through L1 homophilic interactions. Our results implicate L1 in the regulation of DC trafficking and shed light on novel mechanisms underlying transendothelial migration of DCs. These observations might offer novel therapeutic perspectives for the treatment of certain immunological disorders.
Resumo:
The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.
Resumo:
It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
Background and purpose Our aim was to prove in an animal model that the use of HA paste at the cement-bone interface in the acetabulum would improve fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylemethacrylate (PMMA). Methods We made a randomized study involving 22 sheep to test whether the application of BoneSource hydroxyapatite material to the surface of the ovine acetabulum prior to cementing a polyethylene cup at hip arthroplasty improved the fixation and the nature of the interface. We studied the gross radiographical appearance of the implant-bone interface and the histological appearance at the interface. Results There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not confer any detrimental effects. In some cases the material appeared to have been fully resorbed. When the material was evident on histological section, it was incorporated into an osseointegrated interface. There was no giant cell reaction present in any case. There was no evidence of migration of BoneSource to the articulation. Interpretation The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in man with to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.
Resumo:
The assumption that mesenchymal stromal cell (MSC)-based therapies are capable of augmenting physiological regeneration processes has fostered intensive basic and clinical research activities. However, to achieve sustained therapeutic success in vivo, not only the biological, but also the mechanical microenvironment of MSCs during these regeneration processes needs to be taken into account. This is especially important for e.g., bone fracture repair, since MSCs present at the fracture site undergo significant biomechanical stimulation. This study has therefore investigated cellular characteristics and the functional behaviour of MSCs in response to mechanical loading. Our results demonstrated a reduced expression of MSC surface markers CD73 (ecto-5’-nucleotidase) and CD29 (integrin β1) after loading. On the functional level, loading led to a reduced migration of MSCs. Both effects persisted for a week after the removal of the loading stimulus. Specifi c inhibition of CD73/CD29 demonstrated their substrate dependent involvement in MSC migration after loading. These results were supported by scanning electron microscopy images and phalloidin staining of actin fi laments displaying less cell spreading, lamellipodia formation and actin accumulations. Moreover, focal adhesion kinase and Src-family kinases were identified as candidate downstream targets of CD73/CD29 that might contribute to the mechanically induced decrease in MSC migration. These results suggest that MSC migration is controlled by CD73 CD29, which in turn are regulated by mechanical stimulation of cells. We therefore speculate that MSCs migrate into the fracture site, become mechanically entrapped, and thereby accumulate to fulfil their regenerative functions.