2 resultados para migration of rhizobia
em CaltechTHESIS
Resumo:
The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.
The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.
Resumo:
Heparan sulfate (HS) glycosaminoglycans participate in critical biological processes by modulating the activity of a diverse set of protein binding partners. Such proteins include all known members of the chemokine superfamily, which are thought to guide the migration of distinct subsets of immune cells through their interactions with HS proteoglycans on endothelial cell surfaces. Animal-derived heparin polysaccharides have been shown to reduce inflammation levels through the inhibition of HS-chemokine interactions; however, the clinical usage of heparin as an anti-inflammatory drug is hampered by its anticoagulant activity and potential risk for side effects, such as heparin-induced thrombocytopenia (HIT).
Here, we describe an expedient, divergent synthesis to prepare defined glycomimetics of HS that recapitulate the macromolecular structure and biological activity of natural HS glycosaminoglycans. Our synthetic approach uses a core disaccharide precursor to generate a library of four differentially sulfated polymers. We show that a trisulfated glycopolymer antagonizes the chemotactic activities of pro-inflammatory chemokine RANTES with similar potency as heparin polysaccharide, without potentiating the anticoagulant activities of antithrombin III. The same glycopolymer also inhibited the homeostatic chemokine SDF-1 with significantly more efficacy than heparin. Our work offers a general strategy for modulating chemokines and dissecting the pleiotropic functions of HS/heparin through the presentation of defined sulfation motifs within multivalent polymeric scaffolds.