383 resultados para customer identification
em Queensland University of Technology - ePrints Archive
Resumo:
Successful identification and exploitation of opportunities has been an area of interest to many entrepreneurship researchers. Since Shane and Venkataraman’s seminal work (e.g. Shane and Venkataraman, 2000; Shane, 2000), several scholars have theorised on how firms identify, nurture and develop opportunities. The majority of this literature has been devoted to understanding how entrepreneurs search for new applications of their technological base or discover opportunities based on prior knowledge (Zahra, 2008; Sarasvathy et al., 2003). In particular, knowledge about potential customer needs and problems that may present opportunities is vital (Webb et al., 2010). Whereas the role of prior knowledge of customer problems (Shane, 2003; Shepherd and DeTienne, 2005) and positioning oneself in a so-called knowledge corridor (Fiet, 1996) has been researched, the role of opportunity characteristics and their interaction with customer-related mechanisms that facilitate and hinder opportunity identification has received scant attention.
Resumo:
In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing
Resumo:
Grocery shopping is a routine activity widely considered the responsibility of the female spouse, yet modern social and demographic shifts are causing men to engage in this task. This study develops a retail shopping typology of male grocery shoppers, employing a cluster analysis technique. Five distinct cohorts emerge from the data of eight constructs, measured by seventy one items. One new shopper type emerges from this research. This shopper presented as a younger man, at the commencement of their family lifecycle, attracted by a strong value offer, focusing on price and promotional discounts. Our research offers a contribution to the marketing, consumer behaviour and supermarket retailing disciplines in three ways. By examining and identifying male shopping behaviour in the context of grocery shopping, the development of a retail shopping typology of male grocery shoppers and the extension and employment of a cluster analysis in identifying distinct groups. This research has implications for gender, segmentation studies and consumer behaviour disciplines in regard to grocery shopping. The identification of specific groups of male grocery shoppers will enable grocery retailers to effectively implement important, targeted marketing strategies.
Resumo:
In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics
Resumo:
The banking industry is under pressure. In order to compete, banks should adapt to concentrating on the specific customer needs, following an outside-in perspective. This paper presents the design of a business model for banks that considers this development by providing flexible and comprehensive support for retail banking clients. It is demonstrated that the identification of customer processes and the consequent alignment of banking services to those processes implies great potential to increase customer retention in banking. It will be shown that information technology – especially smartphones – can serve as an interface between customer and suppliers to enable an alignment of offerings to customer processes. This approach enables the integration of banks into their customers’ lifestyle, creating emotional value added, improving the personal relationship and the customers’ affiliation with the bank. The paper presents the design of such a customer-process-centric smartphone application and derives success factors for implementation.
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.
Resumo:
A new technique is presented for automatically identifying the phase connection of domestic customers. Voltage information from a reference three phase house is correlated with voltage information from other customer electricity meters on the same network to determine the highest probability phase connection. The techniques are purely based upon a time series of electrical voltage measurements taken by the household smart meters and no additional equipment is required. The method is demonstrated using real smart meter datasets to correctly identify the phase connections of 75 consumers on a low voltage distribution feeder.
Resumo:
The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.