42 resultados para arithmetic
em Queensland University of Technology - ePrints Archive
Resumo:
The most costly operations encountered in pairing computations are those that take place in the full extension field Fpk . At high levels of security, the complexity of operations in Fpk dominates the complexity of the operations that occur in the lower degree subfields. Consequently, full extension field operations have the greatest effect on the runtime of Miller’s algorithm. Many recent optimizations in the literature have focussed on improving the overall operation count by presenting new explicit formulas that reduce the number of subfield operations encountered throughout an iteration of Miller’s algorithm. Unfortunately, almost all of these improvements tend to suffer for larger embedding degrees where the expensive extension field operations far outweigh the operations in the smaller subfields. In this paper, we propose a new way of carrying out Miller’s algorithm that involves new explicit formulas which reduce the number of full extension field operations that occur in an iteration of the Miller loop, resulting in significant speed ups in most practical situations of between 5 and 30 percent.
Resumo:
Sigma-delta modulated systems have a number of very appealing properties and are, therefore, heavily used in analog to digital converters, amplifiers, and modulators. This paper presents new results which indicate that they may also have significant potential for general purpose arithmetic processing.
Resumo:
This paper discusses how fundamentals of number theory, such as unique prime factorization and greatest common divisor can be made accessible to secondary school students through spreadsheets. In addition, the three basic multiplicative functions of number theory are defined and illustrated through a spreadsheet environment. Primes are defined simply as those natural numbers with just two divisors. One focus of the paper is to show the ease with which spreadsheets can be used to introduce students to some basics of elementary number theory. Complete instructions are given to build a spreadsheet to enable the user to input a positive integer, either with a slider or manually, and see the prime decomposition. The spreadsheet environment allows students to observe patterns, gain structural insight, form and test conjectures, and solve problems in elementary number theory.
Resumo:
Modular arithmetic has often been regarded as something of a mathematical curiosity, at least by those unfamiliar with its importance to both abstract algebra and number theory, and with its numerous applications. However, with the ubiquity of fast digital computers, and the need for reliable digital security systems such as RSA, this important branch of mathematics is now considered essential knowledge for many professionals. Indeed, computer arithmetic itself is, ipso facto, modular. This chapter describes how the modern graphical spreadsheet may be used to clearly illustrate the basics of modular arithmetic, and to solve certain classes of problems. Students may then gain structural insight and the foundations laid for applications to such areas as hashing, random number generation, and public-key cryptography.
Resumo:
This paper introduces fast algorithms for performing group operations on twisted Edwards curves, pushing the recent speed limits of Elliptic Curve Cryptography (ECC) forward in a wide range of applications. Notably, the new addition algorithm uses for suitably selected curve constants. In comparison, the fastest point addition algorithms for (twisted) Edwards curves stated in the literature use . It is also shown that the new addition algorithm can be implemented with four processors dropping the effective cost to . This implies an effective speed increase by the full factor of 4 over the sequential case. Our results allow faster implementation of elliptic curve scalar multiplication. In addition, the new point addition algorithm can be used to provide a natural protection from side channel attacks based on simple power analysis (SPA).
Resumo:
This paper provides new results about efficient arithmetic on Jacobi quartic form elliptic curves, y 2 = d x 4 + 2 a x 2 + 1. With recent bandwidth-efficient proposals, the arithmetic on Jacobi quartic curves became solidly faster than that of Weierstrass curves. These proposals use up to 7 coordinates to represent a single point. However, fast scalar multiplication algorithms based on windowing techniques, precompute and store several points which require more space than what it takes with 3 coordinates. Also note that some of these proposals require d = 1 for full speed. Unfortunately, elliptic curves having 2-times-a-prime number of points, cannot be written in Jacobi quartic form if d = 1. Even worse the contemporary formulae may fail to output correct coordinates for some inputs. This paper provides improved speeds using fewer coordinates without causing the above mentioned problems. For instance, our proposed point doubling algorithm takes only 2 multiplications, 5 squarings, and no multiplication with curve constants when d is arbitrary and a = ±1/2.
Resumo:
This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The proposed formulae and algorithms can save time in suitable point representations. To support our claims, a cost comparison is made with classic scalar multiplication algorithms using previous and current operation counts. Most notably, the best speeds are obtained from Jacobi quartic curves which provide the fastest timings for most scalar multiplication strategies benefiting from the proposed 12M + 5S + 1D point doubling and 7M + 3S + 1D point addition algorithms. Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks which are based on simple power analysis (SPA). Keywords: Efficient elliptic curve arithmetic,unified addition, side channel attack.
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.
Resumo:
In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.