Accurate series solutions for gravity-driven Stokes waves
Data(s) |
2010
|
---|---|
Resumo |
In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy. |
Formato |
application/pdf |
Identificador | |
Publicador |
American Institute of Physics |
Relação |
http://eprints.qut.edu.au/33174/3/33174.pdf DOI:10.1063/1.3480394 Dallaston, Michael C. & McCue, Scott W. (2010) Accurate series solutions for gravity-driven Stokes waves. Physics of Fluids, 22(082104). |
Direitos |
Copyright 2010 American Institute of Physics Copyright (2010) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics The following article appeared in (Physics of Fluids, v22, 8, 2010) and may be found at http://link.aip.org/link/?PHF/22/082104 |
Fonte |
Faculty of Science and Technology; Mathematical Sciences |
Palavras-Chave | #010207 Theoretical and Applied Mechanics |
Tipo |
Journal Article |