203 resultados para ZNO FILMS
em Queensland University of Technology - ePrints Archive
Resumo:
We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.
Resumo:
Pure and W-doped ZnO thin films were obtained using magnetron sputtering at working pressures of 0.4 Pa and 1.33 Pa. The films were deposited on glass and alumina substrates at room temperature and subsequently annealed at 400oC for 1 hour in air. The effects of pressure and W-doping on the structure, chemical, optical and electronic properties of the ZnO films for gas sensing were examined. From AFM, the doped film deposited at higher pressure (1.33 Pa) has spiky morphology with much lower grain density and porosity compared to the doped film deposited at 0.4 Pa. The average gain size and roughness of the annealed films were estimated to be 65 nm and 2.2 nm, respectively with slightly larger grain size and roughness appeared in the doped films. From XPS the films deposited at 1.33 Pa favored the formation of adsorbed oxygen on the film surface and this has been more pronounced in the doped film which created active sites for OH adsorption. As a consequence the W-doped film deposited at 1.33 Pa was found to have lower oxidation state of W (35.1 eV) than the doped film deposited at 0.4 Pa (35.9 eV). Raman spectra indicated that doping modified the properties of the ZnO film and induced free-carrier defects. The transmittance of the samples also reveals an enhanced free-carrier density in the W-doped films. The refractive index of the pure film was also found to increase from 1.7 to 2.2 after W-doping whereas the optical band gap only slightly increased. The W-doped ZnO film deposited at 0.4 Pa appeared to have favorable properties for enhanced gas sensing. This film showed significantly higher sensing performance towards 5-10 ppm NO2 at lower operating temperature of 150oC most dominantly due to increased free-carrier defects achieved by W-doping.
Resumo:
Using ZnO seed layers, an efficient approach for enhancing the heterointerface quality of electrodeposited ZnO–Cu2O solar cells is devised. We introduce a sputtered ZnO seed layer followed by the sequential electrodeposition of ZnO and Cu2O films. The seed layer is employed to control the growth and crystallinity and to augment the surface area of the electrodeposited ZnO films, thereby tuning the quality of the ZnO–Cu2O heterointerface. Additionally, the seed layer also assists in forming high quality ZnO films, with no pin-holes, in a high pH electrolyte solution. X-ray electron diffraction patterns, scanning electron and atomic force microscopy images, as well as photovoltaic measurements, clearly demonstrate that the incorporation of certain seed layers results in the alteration of the heterointerface quality, a change in the heterojunction area and the crystallinity of the films near the junction, which influence the current density of photovoltaic devices.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
Flexible paper-like ZnO nanowire films are fabricated and the effect of L-lysine passivation of the nanowire surfaces on improving the UV photoresponse is studied. We prepare three types of nanowires with different defect contents, and find that the L-lysine treatment can suppress the oxygen-vacancy-related photoluminescence as well as enhance the UV photoconduction. The nanowires with fewer defects gain larger enhancement of UV photoconduction after L-lysine treatment. Reproducible UV photoresponse of the devices in humid air is obtained due to L-lysine surface passivation, ruling out the influence of water molecules in degrading the UV photocurrent.
Resumo:
The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated. Gas response of the undoped and doped films to N02 (oxidizing) gas shows an increase and decrease in resistance, respectively, indicating p-type conduction in doped samples. The UV-Vis spectra of the films show decrease in the bandgap with increasing Cu concentration in ZnO. The observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites in ZnO thin films. The X-ray diffraction spectra showed that samples are polycrystalline with the hexagonal wurtzite structure and increasing the concentration of Cu caused a decrease in the intensity of the dominant (002) peak. The surface morphology of films was studied by scanning electron microscopy and the presence of Cu was also confirmed by X-ray photoelectron spectroscopy. Seebeck effect measurements were utilized to confirm the p-type conduction of Cu doped ZnO thin films. Copyright © 2009 American Scientific Publishers All rights reserved.
Resumo:
The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.
Resumo:
Presented is the growth of zinc oxide nanorod/nanowire arrays on gallium nitride epitaxial layers. A hierarchical zinc oxide morphology comprising of different scale zinc oxide nanostructures was observed. The first tier of the surface comprised of typical zinc oxide nanorods, with most bridging to adjacent nanorods. While the second tier comprised of smaller zinc oxide nanowires approximately 30 nm in width often growing atop the aforementioned bridges. Samples were analysed via scanning electron microscopy, as well as, cross-sectional and high resolution transmission electron microscopy to elucidate the detailed growth and structural elements of the heterostructure. © 2009 Elsevier B.V. All rights reserved.
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.
Resumo:
Al-doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.
Resumo:
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm- 3 and mobility of 1.31 cm2 V- 1 s- 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.