20 resultados para Wiener-Hopf operator
em Queensland University of Technology - ePrints Archive
Resumo:
The problem of bubble contraction in a Hele-Shaw cell is studied for the case in which the surrounding fluid is of power-law type. A small perturbation of the radially symmetric problem is first considered, focussing on the behaviour just before the bubble vanishes, it being found that for shear-thinning fluids the radially symmetric solution is stable, while for shear-thickening fluids the aspect ratio of the bubble boundary increases. The borderline (Newtonian) case considered previously is neutrally stable, the bubble boundary becoming elliptic in shape with the eccentricity of the ellipse depending on the initial data. Further light is shed on the bubble contraction problem by considering a long thin Hele-Shaw cell: for early times the leading-order behaviour is one-dimensional in this limit; however, as the bubble contracts its evolution is ultimately determined by the solution of a Wiener-Hopf problem, the transition between the long-thin limit and the extinction limit in which the bubble vanishes being described by what is in effect a similarity solution of the second kind. This same solution describes the generic (slit-like) extinction behaviour for shear-thickening fluids, the interface profiles that generalise the ellipses that characterise the Newtonian case being constructed by the Wiener-Hopf calculation.
Resumo:
This paper formulates an analytically tractable problem for the wake generated by a long flat bottom ship by considering the steady free surface flow of an inviscid, incompressible fluid emerging from beneath a semi-infinite rigid plate. The flow is considered to be irrotational and two-dimensional so that classical potential flow methods can be exploited. In addition, it is assumed that the draft of the plate is small compared to the depth of the channel. The linearised problem is solved exactly using a Fourier transform and the Wiener-Hopf technique, and it is shown that there is a family of subcritical solutions characterised by a train of sinusoidal waves on the downstream free surface. The amplitude of these waves decreases as the Froude number increases. Supercritical solutions are also obtained, but, in general, these have infinite vertical velocities at the trailing edge of the plate. Consideration of further terms in the expansions suggests a way of canceling the singularity for certain values of the Froude number.
Resumo:
Free surface flow past a two-dimensional semi-infinite curved plate is considered, with emphasis given to solving for the shape of the resulting wave train that appears downstream on the surface of the fluid. This flow configuration can be interpreted as applying near the stern of a wide blunt ship. For steady flow in a fluid of finite depth, we apply the Wiener-Hopf technique to solve a linearised problem, valid for small perturbations of the uniform stream. Weakly nonlinear results found using a forced KdV equation are also presented, as are numerical solutions to the fully nonlinear problem, computed using a conformal mapping and a boundary integral technique. By considering different families of shapes for the semi-infinite plate, it is shown how the amplitude of the waves can be minimised. For plates that increase in height as a function of the direction of flow, reach a local maximum, and then point slightly downwards at the point at which the free surface detaches, it appears the downstream wavetrain can be eliminated entirely.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.
Resumo:
In the long term, with development of skill, knowledge, exposure and confidence within the engineering profession, rigorous analysis techniques have the potential to become a reliable and far more comprehensive method for design and verification of the structural adequacy of OPS, write Nimal J Perera, David P Thambiratnam and Brian Clark. This paper explores the potential to enhance operator safety of self-propelled mechanical plant subjected to roll over and impact of falling objects using the non-linear and dynamic response simulation capabilities of analytical processes to supplement quasi-static testing methods prescribed in International and Australian Codes of Practice for bolt on Operator Protection Systems (OPS) that are post fitted. The paper is based on research work carried out by the authors at the Queensland University of Technology (QUT) over a period of three years by instrumentation of prototype tests, scale model tests in the laboratory and rigorous analysis using validated Finite Element (FE) Models. The FE codes used were ABAQUS for implicit analysis and LSDYNA for explicit analysis. The rigorous analysis and dynamic simulation technique described in the paper can be used to investigate the structural response due to accident scenarios such as multiple roll over, impact of multiple objects and combinations of such events and thereby enhance the safety and performance of Roll Over and Falling Object Protection Systems (ROPS and FOPS). The analytical techniques are based on sound engineering principles and well established practice for investigation of dynamic impact on all self propelled vehicles. They are used for many other similar applications where experimental techniques are not feasible.
Resumo:
This workshop provides an ergonomic framework and design rules for the design of automotive controls, considering anthropometric design, physiologic design, biomechanic design and information design.
Resumo:
Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.