606 resultados para WATER ESCAPE STRUCTURES

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of novel tetramethyl- and tetraethylisoindolinenitroxides, possessing aryl-linked carboxylic acids, amines, alcohols and phosphonic acids were prepared. Notably, the chemistry established for the aromatic dibromination of the tetramethylisoindolines was not easily transferred to the corresponding tetraethylisoindoline system. Instead, various tetraethylisoindoline analogues were accessed by the oxidation of methyl groups attached to the aromatic ring to give the carboxylic acids. The increased steric bulk of the tetraethyl structures should limit bio-reduction and these compounds may have potential as antioxidants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the modified unsymmetrically N, N'-substituted viologen chromophore, N-ethyl- N'-(2-phosphonoethyl)-4, 4'-bipyridinium dichloride 0.75 hydrate. (1) has been determined. Crystals are triclinic, space group P-1 with Z = 2 in a cell with a = 7.2550(1), b = 13.2038(5), c = 18.5752(7) Å, α = 86.495(3), β = 83.527(2), γ = 88.921(2)o. The two independent but pseudo-symmetrically related cations in the asymmetric unit form one-dimensional hydrogen-bonded chains through short homomeric phosphonic acid O-H...O links [2.455(4), 2.464(4)A] while two of the chloride anions are similarly strongly linked to phosphonic acid groups [O-H…Cl, 2.889(4), 2.896(4)Å]. The other two chloride anions together with the two water molecules of solvation (one with partial occupancy) form unusual cyclic hydrogen-bonded bis(Cl...water) dianion units which lie between the layers of bipyridylium rings of the cation chain structures with which they are weakly associated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diarrhoea is one of the leading causes of morbidity and mortality in populations in developing countries and is a significant health issue throughout the world. Despite the frequency and the severity of the diarrhoeal disease, mechanisms of pathogenesis for many of the causative agents have been poorly characterised. Although implicated in a number of intestinal and extra-intestinal infections in humans, Plesiomonas shigelloides generally has been dismissed as an enteropathogen due to the lack of clearly demonstrated virulence-associated properties such as production of cytotoxins and enterotoxins or invasive abilities. However, evidence from a number of sources has indicated that this species may be the cause of a number of clinical infections. The work described in this thesis seeks to resolve this discrepancy by investigating the pathogenic potential of P. shigelloides using in vitro cell models. The focus of this research centres on how this organism interacts with human host cells in an experimental model. Very little is known about the pathogenic potential of P. shigel/oides and its mechanisms in human infections and disease. However, disease manifestations mimic those of other related microorganisms. Chapter 2 reviews microbial pathogenesis in general, with an emphasis on understanding the mechanisms resulting from infection with bacterial pathogens and the alterations in host cell biology. In addition, this review analyses the pathogenic status of a poorly-defined enteropathogen, P. shigelloides. Key stages of pathogenicity must occur in order for a bacterial pathogen to cause disease. Such stages include bacterial adherence to host tissue, bacterial entry into host tissues (usually required), multiplication within host tissues, evasion of host defence mechanisms and the causation of damage. In this study, these key strategies in infection and disease were sought to help assess the pathogenic potential of P. shigelloides (Chapter 3). Twelve isolates of P. shigelloides, obtained from clinical cases of gastroenteritis, were used to infect monolayers of human intestinal epithelial cells in vitro. Ultrastructural analysis demonstrated that P. shigelloides was able to adhere to the microvilli at the apical surface of the epithelial cells and also to the plasma membranes of both apical and basal surfaces. Furthermore, it was demonstrated that these isolates were able to enter intestinal epithelial cells. Internalised bacteria often were confined within vacuoles surrounded by single or multiple membranes. Observation of bacteria within membranebound vacuoles suggests that uptake of P. shigelloides into intestinal epithelial cells occurs via a process morphologically comparable to phagocytosis. Bacterial cells also were observed free in the host cell cytoplasm, indicating that P. shige/loides is able to escape from the surrounding vacuolar membrane and exist within the cytosol of the host. Plesiomonas shigelloides has not only been implicated in gastrointestinal infections, but also in a range of non-intestinal infections such as cholecystitis, proctitis, septicaemia and meningitis. The mechanisms by which P. shigelloides causes these infections are not understood. Previous research was unable to ascertain the pathogenic potential of P. shigel/oides using cells of non-intestinal origin (HEp-2 cells derived from a human larynx carcinoma and Hela cells derived from a cervical carcinoma). However, with the recent findings (from this study) that P. shigelloides can adhere to and enter intestinal cells, it was hypothesised, that P. shigel/oides would be able to enter Hela and HEp-2 cells. Six clinical isolates of P. shigelloides, which previously have been shown to be invasive to intestinally derived Caco-2 cells (Chapter 3) were used to study interactions with Hela and HEp-2 cells (Chapter 4). These isolates were shown to adhere to and enter both nonintestinal host cell lines. Plesiomonas shigelloides were observed within vacuoles surrounded by single and multiple membranes, as well as free in the host cell cytosol, similar to infection by P. shigelloides of Caco-2 cells. Comparisons of the number of bacteria adhered to and present intracellularly within Hela, HEp-2 and Caco-2 cells revealed a preference of P. shigelloides for Caco-2 cells. This study conclusively showed for the first time that P. shigelloides is able to enter HEp-2 and Hela cells, demonstrating the potential ability to cause an infection and/or disease of extra-intestinal sites in humans. Further high resolution ultrastructural analysis of the mechanisms involved in P. shigelloides adherence to intestinal epithelial cells (Chapter 5) revealed numerous prominent surface features which appeared to be involved in the binding of P. shige/loides to host cells. These surface structures varied in morphology from small bumps across the bacterial cell surface to much longer filaments. Evidence that flagella might play a role in bacterial adherence also was found. The hypothesis that filamentous appendages are morphologically expressed when in contact with host cells also was tested. Observations of bacteria free in the host cell cytosol suggests that P. shigelloides is able to lyse free from the initial vacuolar compartment. The vacuoles containing P. shigel/oides within host cells have not been characterised and the point at which P. shigelloides escapes from the surrounding vacuolar compartment has not been determined. A cytochemical detection assay for acid phosphatase, an enzymatic marker for lysosomes, was used to analyse the co-localisation of bacteria-containing vacuoles and acid phosphatase activity (Chapter 6). Acid phosphatase activity was not detected in these bacteria-containing vacuoles. However, the surface of many intracellular and extracellular bacteria demonstrated high levels of acid phosphatase activity, leading to the proposal of a new virulence factor for P. shigelloides. For many pathogens, the efficiency with which they adhere to and enter host cells is dependant upon the bacterial phase of growth. Such dependency reflects the timing of expression of particular virulence factors important for bacterial pathogenesis. In previous studies (Chapter 3 to Chapter 6), an overnight culture of P. shigelloides was used to investigate a number of interactions, however, it was unknown whether this allowed expression of bacterial factors to permit efficient P. shigelloides attachment and entry into human cells. In this study (Chapter 7), a number of clinical and environmental P. shigelloides isolates were investigated to determine whether adherence and entry into host cells in vitro was more efficient during exponential-phase or stationary-phase bacterial growth. An increase in the number of adherent and intracellular bacteria was demonstrated when bacteria were inoculated into host cell cultures in exponential phase cultures. This was demonstrated clearly for 3 out of 4 isolates examined. In addition, an increase in the morphological expression of filamentous appendages, a suggested virulence factor for P. shigel/oides, was observed for bacteria in exponential growth phase. These observations suggest that virulence determinants for P. shigel/oides may be more efficiently expressed when bacteria are in exponential growth phase. This study demonstrated also, for the first time, that environmental water isolates of P. shigelloides were able to adhere to and enter human intestinal cells in vitro. These isolates were seen to enter Caco-2 host cells through a process comparable to the clinical isolates examined. These findings support the hypothesis of a water transmission route for P. shigelloides infections. The results presented in this thesis contribute significantly to our understanding of the pathogenic mechanisms involved in P. shigelloides infections and disease. Several of the factors involved in P. shigelloides pathogenesis have homologues in other pathogens of the human intestine, namely Vibrio, Aeromonas, Salmonella, Shigella species and diarrhoeaassociated strains of Escherichia coli. This study emphasises the relevance of research into Plesiomonas as a means of furthering our understanding of bacterial virulence in general. As well it provides tantalising clues on normal and pathogenic host cell mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localisation of an AUV is challenging and a range of inspection applications require relatively accurate positioning information with respect to submerged structures. We have developed a vision based localisation method that uses a 3D model of the structure to be inspected. The system comprises a monocular vision system, a spotlight and a low-cost IMU. Previous methods that attempt to solve the problem in a similar way try and factor out the effects of lighting. Effects, such as shading on curved surfaces or specular reflections, are heavily dependent on the light direction and are difficult to deal with when using existing techniques. The novelty of our method is that we explicitly model the light source. Results are shown of an implementation on a small AUV in clear water at night.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of porphyrins substituted in one or two meso-positions by diphenylphosphine oxide groups has been prepared by the palladium catalysed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination and reductive elimination steps, as the stoichiometric reaction of η1-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterised by multinuclear NMR and UV-visible spectroscopy as well as mass spectrometry. Single crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighbouring zinc porphyrin through an almost linear P=O---Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.