329 resultados para Static Posture

em Queensland University of Technology - ePrints Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rehabilitation programs of bone-anchorage prostheses relying either on the OPRA (Integrum, Sweden) or the ILP (Orthodynamics, Germany) fixation involve some forms of static load bearing exercises (LBE). So far, most of biomechanical studies of these static LBEs focused on the direct measurements of the actual forces and moments applied on the OPRA fixation of individuals with transfemoral amputation (TFA). To date, the proof-of-concept of an apparatus to conduct these kinetic measurements has been presented, along with some preliminary data. The understanding of the kinetic data is essential to improve rehabilitation programs as well as the design of upcoming loading frames. However, kinetic information alone is difficult to interpret without concomitant kinematic data. The purpose of this preliminary study was to introduce a qualitative analysis describing the different body postures during LBE for a group of TFAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive-energetical theories of information processing were used to generate predictions regarding the relationship between workload and fatigue within and across consecutive days of work. Repeated measures were taken on board a naval vessel during a non-routine and a routine patrol. Data were analyzed using growth curve modeling. Fatigue demonstrated a non-monotonic relationship within days in both patrols – fatigue was high at midnight, started decreasing until noontime and then increased again. Fatigue increased across days towards the end of the non-routine patrol, but remained stable across days in the routine patrol. The relationship between workload and fatigue changed over consecutive days in the non-routine patrol. At the beginning of the patrol, low workload was associated with fatigue. At the end of the patrol, high workload was associated with fatigue. This relationship could not be tested in the routine patrol, however it demonstrated a non-monotonic relationship between workload and fatigue – low and high workloads were associated with the highest fatigue. These results suggest that the optimal level of workload can change over time and thus have implications for the management of fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective • Feasibility programme for on-board mass (OBM) monitoring of heavy vehicles (HVs) • Australian road authorities through Transport Certification Australia (TCA) • Accuracy of contemporary, commercially-available OBM units in Australia • Results need to be addressed/incorporated into specifications for Stage 2 of Intelligent Access Program (IAP) by Transport Certification Australia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high-power and high-voltage operations at low distortion. It uses capacitors, called flying capacitors, to clamp the voltage across the power semiconductor devices. A method for controlling the FCMLI is proposed which ensures that the flying capacitor voltages remain nearly constant using the preferential charging and discharging of these capacitors. A static synchronous compensator (STATCOM) and a static synchronous series compensator (SSSC) based on five-level flying capacitor inverters are proposed. Control schemes for both the FACTS controllers are developed and verified in terms of voltage control, power flow control, and power oscillation damping when installed in a single-machine infinite bus (SMIB) system. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based flexible alternating current transmission system (FACTS) controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.